J 2025

Reversible change of high-temperature oxidation resistance of graphene-copper nanocomposites by interplay of catalytic effect of copper and structural disorder of few-layer graphene

JAŠEK, Ondřej; F. J. MORALES-CALERO; Dalibor VŠIANSKÝ; Jana JURMANOVÁ; R. RINCON et. al.

Základní údaje

Originální název

Reversible change of high-temperature oxidation resistance of graphene-copper nanocomposites by interplay of catalytic effect of copper and structural disorder of few-layer graphene

Autoři

JAŠEK, Ondřej; F. J. MORALES-CALERO; Dalibor VŠIANSKÝ; Jana JURMANOVÁ; R. RINCON; A. M. RAYA a J. MUNOZ

Vydání

Diamond and Related Materials, Elsevier, 2025, 0925-9635

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

20501 Materials engineering

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.100 v roce 2024

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001603890900001

EID Scopus

2-s2.0-105020036831

Klíčová slova anglicky

Graphene; Copper nanoparticles; Microwave plasma; Thermal stability; Reversibility

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 18. 11. 2025 09:49, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

High-temperature stability of nanocomposite materials based on metal nanoparticles embedded in the graphene matrix play an important role in modern technology, especially in the field of energy storage and thermal management materials. Few-layer graphene (FLG) nanosheets/Cu nanoparticles (Cu-NPs) composites were prepared by decomposition of ethanol in TIAGO (Torche à Injection Axial sur Guide d'Ondes) microwave plasma torch at atmospheric pressure using erosion of copper nozzle electrode as source of Cu. Delivered microwave power and subsequent heat treatment annealing of the composite material led to the controllable change of its high-temperature oxidation resistance, determined by thermogravimetry in argon and air. As-synthesized and annealed Cu-NPs and FLG structures were analyzed by scanning and transmission electron microscopy and Raman and X-Ray photoelectron spectroscopy and Energy-dispersive X-ray analysis. The amount of copper was determined by X-ray powder diffraction using the internal standard method. Results show that the copper fraction - nanoparticle's size and their quantity, together with amounts of disorder in the FLG structure are the critical factors controlling the observed modification of high-temperature resistance. Partial removal of both Cu-NPs as well as highly disordered graphene fraction using high temperature (800–1050 °C) annealing in Ar or vacuum, led to the controlled variation of nanocomposite's thermal stability under oxidation atmosphere, with continuous change of maximum oxidation rate between 500 and 750 °C. Moreover, the purposeful admixture of disordered fraction of graphene nanosheets enabled recovery of initial state of nanocomposite properties and recovery of its high-temperature original oxidation resistance.

Návaznosti

LM2023039, projekt VaV
Název: Centrum výzkumu a vývoje plazmatu a nanotechnologických povrchových úprav
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, R&D centre for plasma and nanotechnology surface modifications