2026
Filtering Few-Level Segment Regions for Efficient Subsequence Search in 3D Human Motions
ČERNEK, Andrej a Jan SEDMIDUBSKÝZákladní údaje
Originální název
Filtering Few-Level Segment Regions for Efficient Subsequence Search in 3D Human Motions
Autoři
Vydání
48th European Conference on Information Retrieval (ECIR), 16 s. 2026
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Forma vydání
elektronická verze "online"
Organizační jednotka
Fakulta informatiky
Klíčová slova anglicky
3D skeleton sequences; subsequence search; overlapping segmentation; query localization; 3D action retrieval; motion similarity
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 17. 12. 2025 18:16, doc. RNDr. Jan Sedmidubský, Ph.D.
Anotace
V originále
Efficient localization of query-similar subsequences in a database of untrimmed 3D human motion data is crucial to applications in numerous domains. We propose a novel subsequence search approach that partitions untrimmed database motions into segments across a few levels to accommodate variably-sized queries, addressing the limitations of single- and many-level state-of-the-art methods. By determining a deep similarity between the query and database segments, we specifically identify larger regions within the database motions likely to contain query-similar subsequences. These regions are then narrowly examined to determine the precise location of relevant subsequences, considering also variations in execution speed. While this approach contributes to a high retrieval quality, it also requires high search costs. Therefore, we propose two filtering techniques that further decrease the number of examined subsequences by more than an order of magnitude on a newly established benchmark across four challenging PKU-MMD sub-datasets.
Návaznosti
| GF23-07040K, projekt VaV |
|