2025
Learning the syntax of plant assemblages
LEBLANC, Cesar; Pierre BONNET; Maximilien SERVAJEAN; Wilfried THUILLER; Milan CHYTRÝ et. al.Základní údaje
Originální název
Learning the syntax of plant assemblages
Autoři
LEBLANC, Cesar; Pierre BONNET; Maximilien SERVAJEAN; Wilfried THUILLER; Milan CHYTRÝ; Svetlana ACIC; Olivier ARGAGNON; Idoia BIURRUN; Gianmaria BONARI; Helge BRUELHEIDE; Juan Antonio CAMPOS; Andraz CARNI; Renata CUSTEREVSKA; De Sanctis MICHELE; Jurgen DENGLER; Tetiana DZIUBA; Emmanuel GARBOLINO; Ute JANDT; Florian JANSEN; Jonathan LENOIR; Jesper Erenskjold MOESLUND; Aaron PEREZ-HAASE; Remigiusz PIELECH; Jozef SIBIK; Zvjezdana STANCIC; Domas UOGINTAS; Thomas WOHLGEMUTH a Alexis JOLY
Vydání
Nature Plants, LONDON, NATURE PORTFOLIO, 2025, 2055-026X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10611 Plant sciences, botany
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 13.600 v roce 2024
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001591921900001
EID Scopus
2-s2.0-105018760144
Klíčová slova anglicky
Biodiversity; Conservation of Natural Resources; Ecosystem; Plants
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 1. 2026 17:45, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
To address the urgent biodiversity crisis, it is crucial to understand the nature of plant assemblages. The distribution of plant species is shaped not only by their broad environmental requirements but also by micro-environmental conditions, dispersal limitations, and direct and indirect species interactions. While predicting species composition and habitat type is essential for conservation and restoration purposes, it remains challenging. In this study, we propose an approach inspired by advances in large language models to learn the 'syntax' of abundance-ordered plant species sequences in communities. Our method, which captures latent associations between species across diverse ecosystems, can be fine-tuned for diverse tasks. In particular, we show that our methodology is able to outperform other approaches to (1) predict species that might occur in an assemblage given the other listed species, despite being originally missing in the species list (16.53% higher accuracy in retrieving a plant species removed from an assemblage than co-occurrence matrices and 6.56% higher than neural networks), and (2) classify habitat types from species assemblages (5.54% higher accuracy in assigning a habitat type to an assemblage than expert system classifiers and 1.14% higher than tabular deep learning). The proposed application has a vocabulary that covers over 10,000 plant species from Europe and adjacent countries and provides a powerful methodology for improving biodiversity mapping, restoration and conservation biology. As ecologists begin to explore the use of artificial intelligence, such approaches open opportunities for rethinking how we model, monitor and understand nature.