J 2025

Learning the syntax of plant assemblages

LEBLANC, Cesar; Pierre BONNET; Maximilien SERVAJEAN; Wilfried THUILLER; Milan CHYTRÝ et. al.

Základní údaje

Originální název

Learning the syntax of plant assemblages

Autoři

LEBLANC, Cesar; Pierre BONNET; Maximilien SERVAJEAN; Wilfried THUILLER; Milan CHYTRÝ; Svetlana ACIC; Olivier ARGAGNON; Idoia BIURRUN; Gianmaria BONARI; Helge BRUELHEIDE; Juan Antonio CAMPOS; Andraz CARNI; Renata CUSTEREVSKA; De Sanctis MICHELE; Jurgen DENGLER; Tetiana DZIUBA; Emmanuel GARBOLINO; Ute JANDT; Florian JANSEN; Jonathan LENOIR; Jesper Erenskjold MOESLUND; Aaron PEREZ-HAASE; Remigiusz PIELECH; Jozef SIBIK; Zvjezdana STANCIC; Domas UOGINTAS; Thomas WOHLGEMUTH a Alexis JOLY

Vydání

Nature Plants, LONDON, NATURE PORTFOLIO, 2025, 2055-026X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10611 Plant sciences, botany

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 13.600 v roce 2024

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001591921900001

EID Scopus

2-s2.0-105018760144

Klíčová slova anglicky

Biodiversity; Conservation of Natural Resources; Ecosystem; Plants

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 7. 1. 2026 17:45, Mgr. Marie Novosadová Šípková, DiS.

Anotace

V originále

To address the urgent biodiversity crisis, it is crucial to understand the nature of plant assemblages. The distribution of plant species is shaped not only by their broad environmental requirements but also by micro-environmental conditions, dispersal limitations, and direct and indirect species interactions. While predicting species composition and habitat type is essential for conservation and restoration purposes, it remains challenging. In this study, we propose an approach inspired by advances in large language models to learn the 'syntax' of abundance-ordered plant species sequences in communities. Our method, which captures latent associations between species across diverse ecosystems, can be fine-tuned for diverse tasks. In particular, we show that our methodology is able to outperform other approaches to (1) predict species that might occur in an assemblage given the other listed species, despite being originally missing in the species list (16.53% higher accuracy in retrieving a plant species removed from an assemblage than co-occurrence matrices and 6.56% higher than neural networks), and (2) classify habitat types from species assemblages (5.54% higher accuracy in assigning a habitat type to an assemblage than expert system classifiers and 1.14% higher than tabular deep learning). The proposed application has a vocabulary that covers over 10,000 plant species from Europe and adjacent countries and provides a powerful methodology for improving biodiversity mapping, restoration and conservation biology. As ecologists begin to explore the use of artificial intelligence, such approaches open opportunities for rethinking how we model, monitor and understand nature.