2000
Depth profiling of tin-coated glass by laser ablation inductively coupled plasma atomic emission spectrometry with acoustic signal measurement
KANICKÝ, Viktor, Vítězslav OTRUBA a Jean-Michel MERMETZákladní údaje
Originální název
Depth profiling of tin-coated glass by laser ablation inductively coupled plasma atomic emission spectrometry with acoustic signal measurement
Autoři
KANICKÝ, Viktor (203 Česká republika, garant), Vítězslav OTRUBA (203 Česká republika) a Jean-Michel MERMET (250 Francie)
Vydání
Fresenius Journal of Analytical Chemistry, Berlin, Springer-Verlag, 2000, 0937-0633
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10406 Analytical chemistry
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.418
Kód RIV
RIV/00216224:14310/00:00002272
Organizační jednotka
Přírodovědecká fakulta
Klíčová slova anglicky
Laser ablation; Inductively coupled plasma; Atomic emission spectrometry; Tin coating; Glass
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 29. 6. 2007 10:25, prof. RNDr. Viktor Kanický, DrSc.
V originále
A pulsed, frequency-quadrupled Nd:YAG laser (266 nm, 10 Hz) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES) was employed for depth profiling by ablation of a pyrolytically deposited Sn layer (300 nm) on float glass. The procedure consisted of performing individual ablation cycles (layer-by-layer). A raster with stroke distance of either 50 mu m or 200 mu m (the raster density) was used as an ablation pattern. The ablation was stopped after each cycle and the peal; area of the resulting transient optical signal of the ICP discharge was plotted against the cycle number. The ablation rate of 90 to 20 nm per cycle at a low-energy pulse (6 mJ to 1 mJ) was determined by profilometry. A beam masking was employed to attenuate the laser shot energy and to eliminate the peripheral irregularity of the beam profile. Almost uniform removal of the square area (1 mm x 1 mm) of the coating by ablation was achieved by combining the fitted raster density, beam masking, focusing and beam energy. Different ablation processes were distinguished in cases of the tin coating and the uncoated glass surface. While the coating was mainly evaporated, the uncoated glass surface exhibited a crumbling associated with production of glass powder. This was confirmed by electron microscopy observations. The measured acoustic signal followed the behavior of the emission intensity of the Sn line and was supposed to be proportional to the amount of Sn vapors. The emission intensity depth profile of the Sn coating with graded structure was obtained, which qualitatively corresponded with the depth profile measured by secondary ion mass spectrometry.
Česky
A pulsed, frequency-quadrupled Nd:YAG laser (266 nm, 10 Hz) coupled to an inductively coupled plasma atomic emission spectrometer (ICP-AES) was employed for depth profiling by ablation of a pyrolytically deposited Sn layer (300 nm) on float glass. The procedure consisted of performing individual ablation cycles (layer-by-layer). A raster with stroke distance of either 50 mu m or 200 mu m (the raster density) was used as an ablation pattern. The ablation was stopped after each cycle and the peal; area of the resulting transient optical signal of the ICP discharge was plotted against the cycle number. The ablation rate of 90 to 20 nm per cycle at a low-energy pulse (6 mJ to 1 mJ) was determined by profilometry. A beam masking was employed to attenuate the laser shot energy and to eliminate the peripheral irregularity of the beam profile. Almost uniform removal of the square area (1 mm x 1 mm) of the coating by ablation was achieved by combining the fitted raster density, beam masking, focusing and beam energy. Different ablation processes were distinguished in cases of the tin coating and the uncoated glass surface. While the coating was mainly evaporated, the uncoated glass surface exhibited a crumbling associated with production of glass powder. This was confirmed by electron microscopy observations. The measured acoustic signal followed the behavior of the emission intensity of the Sn line and was supposed to be proportional to the amount of Sn vapors. The emission intensity depth profile of the Sn coating with graded structure was obtained, which qualitatively corresponded with the depth profile measured by secondary ion mass spectrometry.
Návaznosti
GA203/97/0345, projekt VaV |
| ||
VS97020, projekt VaV |
|