2002
Partial least squares and artificial neural networks for multicomponent analysis from derivative UV-Vis spectra
TRNKOVÁ, Libuše, Eladia M. PEŇA-MENDEZ, Jana TOPINKOVÁ a Josef HAVELZákladní údaje
Originální název
Partial least squares and artificial neural networks for multicomponent analysis from derivative UV-Vis spectra
Autoři
TRNKOVÁ, Libuše (203 Česká republika, garant), Eladia M. PEŇA-MENDEZ (724 Španělsko), Jana TOPINKOVÁ (203 Česká republika) a Josef HAVEL (203 Česká republika)
Vydání
1. vyd. Czech Republic, Brno, International Chemometric Conference - CHEMOMETRICS VI, od s. P21, 1 s. 2002
Nakladatel
Masaryk University, Brno, Czech Republic
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10406 Analytical chemistry
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14310/02:00006479
Organizační jednotka
Přírodovědecká fakulta
ISBN
80-210-2918-8
Klíčová slova anglicky
Partial least squares (PLS);artificial neural networks(ANN);multicomponent analysis;derivative UV-Vis spectra;adenine;cytosine
Štítky
Změněno: 30. 5. 2003 18:45, prof. RNDr. Libuše Trnková, CSc.
Anotace
V originále
This contribution presents a comparative study of the use of PLS and ANNs to analyze A and C mixtures using UV-Vis derivative spectra. The optimum ANN architecture enabling to model the system was established by means of TRAJAN 6.0 program. Several algorithms (Back propagation, Conjugate gradients, Quick propagation, and Delta-Bar Delta algorithm) were used for the training of the ANN to obtain a reliable model. With help of a suitable experimental design in combination with soft ANN modelling, the concentration of both A and C in mixtures can be quantified with an excellent accuracy (about 1 %). The quality of the testing set was evaluated on the basis of the average root mean square error for prediction (RMSEP) calculated from true and found values of A and C concentrations (RMSEP = 0.07 for A and 0.09 for C). It was found that ANN gives better results for the first and second derivative spectra than for original spectra. Furthermore, in comparison with PLS the ANN provides a more reliable and precise approach in the multicomponent analysis of A and C mixtures, where a number of different interactions take place.
Návaznosti
GA203/02/0422, projekt VaV |
| ||
IAA1163201, projekt VaV |
| ||
MSM 143100011, záměr |
|