2002
Hilbert-space techniques for spectral representation in terms of overcomplete bases
VESELÝ, VítězslavZákladní údaje
Originální název
Hilbert-space techniques for spectral representation in terms of overcomplete bases
Autoři
Vydání
Brno (Czech Rep.), Proceedings of the Summer School DATASTAT'2001, Folia Fac. Sci. Nat. Univ. Masaryk. Brunensis, Mathematica 11, s. 259-273, 2002
Nakladatel
Masaryk University
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10101 Pure mathematics
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14310/02:00007145
Organizační jednotka
Přírodovědecká fakulta
ISBN
80-210-3028-3
Klíčová slova anglicky
functional approximation; kernel operators; frame and wavelet expansions; pseudoinverse operators
Štítky
Příznaky
Recenzováno
Změněno: 15. 1. 2007 17:18, doc. RNDr. Vítězslav Veselý, CSc.
Anotace
V originále
Topics associated with the representation of objects from a separable Hilbert space in terms of an a priori given overcomplete system (dictionary) of its generators (atoms) are handled. First the procedure of finding such a representation is formulated and solved using the Hilbert-space technique of linear bounded operators and their generalized inverse. Afterwards the problem of finding its sparse representation is discussed, i.e. such representation where most information on the given object is concentrated in a fewest possible number of its nonzero (spectral) coefficients in that representation. This may be rephrased as a procedure for finding a subbasis which is in a certain sense optimal for the given object in the scope of the prescribed overcomplete system. In general the common approach based on Moore-Penrose pseudoinverse does not yield the desired sparse solutions. That is why alternate procedures are discussed, in particular from the point of view of their numerical stability and computational feasibility.
Návaznosti
| MSM 143100001, záměr |
|