2002
CAPILLARY ELECTROPHORESIS CHIRAL SEPARATION MODELLING WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
HAVEL, Josef a Marta FARKOVÁZákladní údaje
Originální název
CAPILLARY ELECTROPHORESIS CHIRAL SEPARATION MODELLING WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
Autoři
HAVEL, Josef (203 Česká republika) a Marta FARKOVÁ (203 Česká republika, garant)
Vydání
1. vyd. Olomouc, CHIRANAL 2002, s. 65-65, 2002
Nakladatel
ALGA PRESS
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10406 Analytical chemistry
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14310/02:00007205
Organizační jednotka
Přírodovědecká fakulta
ISBN
80-86238-24-5
Klíčová slova anglicky
artificial neural networks; capillary electrophoresis; chiral separation
Změněno: 13. 5. 2003 09:26, RNDr. Marta Farková, CSc.
Anotace
V originále
Recent development and future trends of enantioseparations in capillary electrophoresis have been reviewed by Chankvetadze et al. On the base of exact physicochemical description using e.g. CELET program the stability constants of either chiral or non-chiral inclusion complexes can be calculated. As for review we refer to Vespalec et al. Recently, we have shown that "soft" modelling of achiral CE separation processes is possible using a combination of artificial neural networks (ANN) and experimental design. Possibility of enantiomers quantification from unresolved peaks was also demonstrated. In this work we are examining possibility of chiral separation "soft" modelling with ANN. It was found that, using suitable ANN architecture, the description of chiral separation is possible with sufficient accuracy. The advantage is that it is not necessary to know or determine chiral selector - enantiomers stability constants and/or the separation mechanism. Using combination of suitable experimental design and ANN architecture, the prediction of optimal conditions for the separation of enantiomers is possible.
Návaznosti
GA203/02/1103, projekt VaV |
|