2003
Combining fold recognition and exploratory data analysis for searching for glycosyltransferases in the genome of Mycobacterium tuberculosis
WIMMEROVÁ, Michaela, Soren B. ENGELSEN, Emmanuel BETTLER, Christelle BRETON, Anne IMBERTY et. al.Základní údaje
Originální název
Combining fold recognition and exploratory data analysis for searching for glycosyltransferases in the genome of Mycobacterium tuberculosis
Autoři
WIMMEROVÁ, Michaela (203 Česká republika, garant), Soren B. ENGELSEN (208 Dánsko), Emmanuel BETTLER (250 Francie), Christelle BRETON (250 Francie) a Anne IMBERTY (250 Francie)
Vydání
Biochimie, Elsevier, 2003, 0300-9084
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 3.707
Kód RIV
RIV/00216224:14310/03:00008870
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000185771000009
Klíčová slova anglicky
Glycosyltransferase; Mycobacterium; Fold recognition; Chemometrics
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 4. 1. 2007 15:32, prof. RNDr. Michaela Wimmerová, Ph.D.
Anotace
V originále
Fold recognition was applied to the systematic analysis of the all sequences encoded by the genome of Mycobacterium tuberculosis H37Rv in order to identify new putative glycosyltransferases. The search was conducted against a library composed of all known crystal structures of glycosyltransferases and some related proteins. A clear relationship appeared between some sequences and some folds. It appears necessary to complete the fold recognition approach with a statistical approach in order to identify the relevant data above the background noise. Exploratory data analysis was carried out using several methods. Analytical methods confirmed the validity of the approach, while predictive methods, although very preliminary in the present case, allowed for identifying a number of sequences of interest that should be further investigated. This new approach combining bioinformatics and chemometrics appears to be a powerful tool for analysis of newly sequenced genomes. Its application to glycobiology is of great interest.
Návaznosti
LN00A016, projekt VaV |
|