2002
Coupled intervals in the discrete calculus of variations: necessity and sufficiency
HILSCHER, Roman a Vera ZEIDANZákladní údaje
Originální název
Coupled intervals in the discrete calculus of variations: necessity and sufficiency
Autoři
HILSCHER, Roman a Vera ZEIDAN
Vydání
Journal of Mathematical Analysis and Applications, USA, Acad.Press, 2002, 0022-247X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.458
Kód RIV
RIV/00216224:14310/02:00008169
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000179972600027
Klíčová slova anglicky
discrete quadratic functional; coupled interval; Jacobi difference equation; conjugate interval; Legendre condition; discrete calculus of variations
Štítky
Změněno: 26. 6. 2009 07:44, prof. RNDr. Roman Šimon Hilscher, DSc.
Anotace
V originále
In this work we study nonnegativity and positivity of a discrete quadratic functional with separately varying endpoints. We introduce a notion of an interval coupled with 0, and hence, extend the notion of conjugate interval to 0 from the case of fixed to variable endpoint(s). We show that the nonnegativity of the discrete quadratic functional is equivalent to each of the following conditions: the nonexistence of intervals coupled with 0, the existence of a solution to Riccati matrix equation and its boundary conditions. Natural strengthening of each of these conditions yields a characterization of the positivity of the discrete quadratic functional. Since the quadratic functional under consideration could be a second variation of a discrete calculus of variations problem with varying endpoints, we apply our results to obtain necessary and sufficient optimality conditions for such problems. This paper generalizes our recent work in [18], where the right endpoint is fixed.
Návaznosti
| GA201/01/0079, projekt VaV |
|