2003
Mechanism of Proton Transfer in Short Protonated Oligopeptides. 1. N-Methylacetamide and N2-Acetyl-N1-methylglycinamide
KULHÁNEK, Petr; Edward W. SCHLAG a Jaroslav KOČAZákladní údaje
Originální název
Mechanism of Proton Transfer in Short Protonated Oligopeptides. 1. N-Methylacetamide and N2-Acetyl-N1-methylglycinamide
Autoři
KULHÁNEK, Petr; Edward W. SCHLAG a Jaroslav KOČA
Vydání
J. Phys. Chem. A, American Chemical Society, 2003, 1089-5639
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10402 Inorganic and nuclear chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.792
Kód RIV
RIV/00216224:14310/03:00008940
Organizační jednotka
Přírodovědecká fakulta
Klíčová slova anglicky
proton transfer; proton exchange; proton interaction; DFT
Štítky
Změněno: 13. 12. 2003 11:44, prof. RNDr. Jaroslav Koča, DrSc.
Anotace
V originále
A study of proton transfer in models of a single peptide unit (N-methylacetamide) and diamide (N2-acetyl-N1-methylglycinamide) as well as the influence of a single water molecule on proton transfer is presented here. Three proton pathways in protonated N-methylacetamide are considered: isomerization, inversion, and 1,3-proton shift. The isomerization step exhibits the lowest energy barrier. When a single water molecule was added, no significant influence on proton isomerization was observed. In the diamide model, the isomerization-jump mechanism of proton transfer along diamide carbonyl oxygens was inspected, and the proton isomerization steps were found to be the most energy-demanding processes (~17 kcal mol-1). The presence of a single water molecule leads to a different, lower-energy-barrier proton-transfer mechanism with proton exchange. The highest energy barrier is only 7.6 kcal mol-1. Possible competing pathways are also discussed.
Návaznosti
| LN00A016, projekt VaV |
|