2006
Asymptotic properties of an unstable two-dimensional differential system with delay
KALAS, JosefZákladní údaje
Originální název
Asymptotic properties of an unstable two-dimensional differential system with delay
Název česky
Asymptotické vlastnosti nestabilního dvourozměrného diferenciálního systému se zpožděním
Autoři
Vydání
Mathematica Bohemica : časopis pro pěstování matematiky, Praha, Matematický ústav AV ČR, 2006, 0862-7959
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14310/06:00015380
Organizační jednotka
Přírodovědecká fakulta
Klíčová slova anglicky
delayed differential equation; asymptotic behaviour; boundedness of solutions; two-dimensional systems; Lyapunov method; Wazewski topological principle
Štítky
Změněno: 11. 9. 2006 11:10, doc. RNDr. Josef Kalas, CSc.
V originále
The asymptotic behaviour of the solutions is studied for a real unstable two-dimensional system x'(t)=A(t)x(t)+B(t)x(t-r)+h(t,x(t),x(t-r)), where r>0 is a constant delay. It is supposed that A, B and h are matrix functions and a vector function, respectively. Our results complement those of Kalas [Nonlinear Anal. 62(2)(2005), 207-224], where the conditions for the existence of bounded solutions or solutions tending to the origin as t approaches infinity are given. The method of investigation is based on the transformation of the real system considered to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle. Stability and asymptotic behaviour of the solutions for the stable case of the equation considered were studied in Kalas and Baráková [J. Math. Anal. Appl. 269(1) (2002), 278--300].
Česky
V práci je studováno asymptotické chování řešení pro reálný dvourozměrný systém x'(t)=A(t)x(t)+B(t)x(t-r)+h(t,x(t),x(t-r)), kde r>0 je konstantní zpoždění. Předpokládá se, že A, B a h jsou maticové resp. vektorová funkce. Výsledky doplňují výsledky práce Kalas [Nonlinear Anal. 62(2)(2005), 207-224], kde jsou uvedeny podmínky pro existemci ohraničených řešení nebo řešení blížících se limitně počátku při t rostoucím nade všechny meze. Metoda vyšetřování je založena na transformaci daného reálného systému na jednu rovnici s komplexními koeficienty. Asymptotické vlastnosti této rovnice jsou studovány pomocí vhodného Ljapunov-Krasovského funkcionálu a pomocí Wažewského topologického principu. Stabilita a asymptotické chování řešení pro stabilní případ uvažované rovnice byly studovány v práci Kalas, Baráková [J. Math. Anal. Appl. 269(1)(2002), 278--300].
Návaznosti
| IAA1163401, projekt VaV |
|