J 2008

Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry

BERING LARSEN, Klaus

Základní údaje

Originální název

Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry

Název česky

Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry

Autoři

BERING LARSEN, Klaus (208 Dánsko, garant, domácí)

Vydání

Journal of Mathematical Physics, USA, American Institute of Physics, 2008, 0022-2488

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10303 Particles and field physics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 1.085

Kód RIV

RIV/00216224:14310/08:00025612

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000255456400040

Klíčová slova anglicky

Batalin-Vilkovisky Field-Antifield Formalism; Odd Laplacian; Anti-Poisson Geometry; Semidensity; Second-Class Constraints; Conversion.

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 17. 3. 2019 17:18, doc. Klaus Bering Larsen, Ph.D.

Anotace

V originále

We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator \Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semidensities to semidensities. We find a local formula for the \Delta_E operator in arbitrary coordinates. As an important application of this setup, we consider the Dirac antibracket on an antisymplectic manifold with antisymplectic second-class constraints. We show that the entire Dirac construction, including the corresponding Dirac BV operator \Delta_{E_D}, exactly follows from conversion of the antisymplectic second-class constraints into first-class constraints on an extended manifold.

Česky

We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator \Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semidensities to semidensities. We find a local formula for the \Delta_E operator in arbitrary coordinates. As an important application of this setup, we consider the Dirac antibracket on an antisymplectic manifold with antisymplectic second-class constraints. We show that the entire Dirac construction, including the corresponding Dirac BV operator \Delta_{E_D}, exactly follows from conversion of the antisymplectic second-class constraints into first-class constraints on an extended manifold.

Návaznosti

MSM0021622409, záměr
Název: Matematické struktury a jejich fyzikální aplikace
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Matematické struktury a jejich fyzikální aplikace