2008
Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry
BERING LARSEN, KlausZákladní údaje
Originální název
Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry
Název česky
Semidensities, Second-Class Constraints and Conversion in Anti-Poisson Geometry
Autoři
BERING LARSEN, Klaus (208 Dánsko, garant, domácí)
Vydání
Journal of Mathematical Physics, USA, American Institute of Physics, 2008, 0022-2488
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10303 Particles and field physics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.085
Kód RIV
RIV/00216224:14310/08:00025612
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000255456400040
Klíčová slova anglicky
Batalin-Vilkovisky Field-Antifield Formalism; Odd Laplacian; Anti-Poisson Geometry; Semidensity; Second-Class Constraints; Conversion.
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 17. 3. 2019 17:18, doc. Klaus Bering Larsen, Ph.D.
V originále
We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator \Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semidensities to semidensities. We find a local formula for the \Delta_E operator in arbitrary coordinates. As an important application of this setup, we consider the Dirac antibracket on an antisymplectic manifold with antisymplectic second-class constraints. We show that the entire Dirac construction, including the corresponding Dirac BV operator \Delta_{E_D}, exactly follows from conversion of the antisymplectic second-class constraints into first-class constraints on an extended manifold.
Česky
We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator \Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semidensities to semidensities. We find a local formula for the \Delta_E operator in arbitrary coordinates. As an important application of this setup, we consider the Dirac antibracket on an antisymplectic manifold with antisymplectic second-class constraints. We show that the entire Dirac construction, including the corresponding Dirac BV operator \Delta_{E_D}, exactly follows from conversion of the antisymplectic second-class constraints into first-class constraints on an extended manifold.
Návaznosti
MSM0021622409, záměr |
|