D 2007

Human telomeric G-DNA - a test example for force field adjustment

FADRNÁ, Eva, Naděžda ŠPAČKOVÁ, Daniel SVOZIL, Jiří ŠPONER, Jaroslav KOČA et. al.

Základní údaje

Originální název

Human telomeric G-DNA - a test example for force field adjustment

Název česky

Lidská telomerní G-DNA - testovací příklad pro vývoj silových polí

Autoři

FADRNÁ, Eva (203 Česká republika, garant), Naděžda ŠPAČKOVÁ (203 Česká republika), Daniel SVOZIL (203 Česká republika), Jiří ŠPONER (203 Česká republika) a Jaroslav KOČA (203 Česká republika)

Vydání

Albany, Journal Of Biomolecular Structure and Dynamics, od s. 709-709, 1 s. 2007

Nakladatel

Adenine Press

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10403 Physical chemistry

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 2.389

Kód RIV

RIV/00216224:14310/07:00022918

Organizační jednotka

Přírodovědecká fakulta

ISSN

UT WoS

000247289600160

Klíčová slova anglicky

G-DNA; force field; human telomere

Příznaky

Mezinárodní význam
Změněno: 23. 6. 2008 15:37, prof. RNDr. Jiří Šponer, DrSc.

Anotace

V originále

Our interest has been focused on molecular modelling studies of DNA quadruplexes. Since these four-stranded arrangements play important role in cell cycle, they are currently extensively studied by means of experimental and computational techniques. Human telomeric sequence was extensively studied by means of molecular modelling tools. Starting from the X-ray structure we tested the influence of various ion types and radii on molecular dynamics, Locally Enhanced Sampling, free energy estimations, etc. Results have shown a strong influence of ion radius on conformational behavior during the trajectories. Greater computational force brings not only larger simulation timescale, but also cumulation of force-field imbalancies which can lead to some artifacts. Simple model of ion description influences entire potential energy surface and may shift the molecule from experimetal geometry. Slight changes in ion parameters force the simulation to completely different area of conformational space. Some (ir)reversible backbone changes of alpha-beta-gamma torsion angles (switches) have been observed in all trajectories that pointed out at some imbalancies in the force field parametrisation. Our study brought a contribution to some methodological tasks such as inclusions of proper ions type or backbone torsions switches. It has shown that human telomere sequence can be used as a testing example for recent methodological problems, because some imbalancies appear in it in relativelly short simulation time.

Česky

Our interest has been focused on molecular modelling studies of DNA quadruplexes. Since these four-stranded arrangements play important role in cell cycle, they are currently extensively studied by means of experimental and computational techniques. Human telomeric sequence was extensively studied by means of molecular modelling tools. Starting from the X-ray structure we tested the influence of various ion types and radii on molecular dynamics, Locally Enhanced Sampling, free energy estimations, etc. Results have shown a strong influence of ion radius on conformational behavior during the trajectories. Greater computational force brings not only larger simulation timescale, but also cumulation of force-field imbalancies which can lead to some artifacts. Simple model of ion description influences entire potential energy surface and may shift the molecule from experimetal geometry. Slight changes in ion parameters force the simulation to completely different area of conformational space. Some (ir)reversible backbone changes of alpha-beta-gamma torsion angles (switches) have been observed in all trajectories that pointed out at some imbalancies in the force field parametrisation. Our study brought a contribution to some methodological tasks such as inclusions of proper ions type or backbone torsions switches. It has shown that human telomere sequence can be used as a testing example for recent methodological problems, because some imbalancies appear in it in relativelly short simulation time.

Návaznosti

LC06030, projekt VaV
Název: Biomolekulární centrum
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Biomolekulární centrum
MSM0021622413, záměr
Název: Proteiny v metabolismu a při interakci organismů s prostředím
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Proteiny v metabolismu a při interakci organismů s prostředím