2008
Statistical Edge Detection of Concealed Weapons Using Artificial Neural Networks
WILLIAMS, Ian, David SVOBODA, Nicholas BOWRING a Elizabeth GUESTZákladní údaje
Originální název
Statistical Edge Detection of Concealed Weapons Using Artificial Neural Networks
Autoři
WILLIAMS, Ian (826 Velká Británie a Severní Irsko), David SVOBODA (203 Česká republika, garant, domácí), Nicholas BOWRING (826 Velká Británie a Severní Irsko) a Elizabeth GUEST (826 Velká Británie a Severní Irsko)
Vydání
Vol. 6812. Bellingham, Washington, Proceedings of SPIE-IS&T Electronic Imaging, od s. 68121J-1-12, 12 s. 2008
Nakladatel
SPIE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
20200 2.2 Electrical engineering, Electronic engineering, Information engineering
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14330/08:00042085
Organizační jednotka
Fakulta informatiky
ISBN
978-0-8194-6984-7
ISSN
UT WoS
000256350500050
Klíčová slova anglicky
statistical edge detection; neural networks; image processing
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 4. 2012 10:00, doc. RNDr. David Svoboda, Ph.D.
Anotace
V originále
A novel edge detector has been developed that utilizes statistical masks and neural networks for the optimal detection of edges over a wide range of image types. The failure of many common edge detection techniques has been observed when analyzing concealed weapons X-ray images, biomedical images or images with significant levels of noise, clutter or texture. This novel technique is based on a statistical edge detection filter that uses a range of two-sample statistical tests to evaluate any local image texture differences. The range and type of tests has been greatly expanded from the previous works. This process is further enhanced by applying combined multiple scale pixel masks and multiple statistical tests, to Artificial Neural Networks (ANN) trained to classify different edge types. Through the use of Artificial Neural Networks (ANN) we can combine the output results of several statistical mask scales into one detector. Furthermore we can allow the combination of several two sample statistical tests of varying properties (for example; mean based, variance based and distribution based). This combination of both scales and tests allows the optimal response from a variety of statistical masks. From this we can produce the optimum edge detection output for a wide variety of images, and the results of this are presented.
Návaznosti
1K05021, projekt VaV |
|