J 2009

Weak maximum principle and accessory problem for control problems on time scales

ŠIMON HILSCHER, Roman a Vera ZEIDAN

Základní údaje

Originální název

Weak maximum principle and accessory problem for control problems on time scales

Název česky

Slabý princip maxima a druhá variace pro úlohy optimálního řízení na časových škálách

Autoři

Vydání

Nonlinear Analysis, 2009, 0362-546X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 1.487

Kód RIV

RIV/00216224:14310/09:00028459

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000264691300020

Klíčová slova anglicky

Time scale; Optimal control problem; Controllability; Normality; Weak maximum principle; Dubois-Reymond Lemma; First variation; Second variation; Feasible family

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 1. 2. 2010 14:44, prof. RNDr. Roman Šimon Hilscher, DSc.

Anotace

V originále

In this paper we derive the first and second variations for a nonlinear time scale optimal control problem with control and state-endpoints equality constraints. Using the first variation, a first order necessary condition for weak local optimality is obtained under the form of a weak maximum principle generalizing the Dubois-Reymond Lemma to the optimal control setting and time scales. A second order necessary condition in terms of the accessory problem is derived by using the nonnegativity of the second variation at all admissible directions. The control problem is studied under a controllability assumption, and with or without the shift in the state variable. These two forms of the problem are shown to be equivalent.

Česky

V tomto článku odvozujeme první a druhou variaci nelineární úlohy optimálního řízení na časových škálách s omezeními pro stavovou proměnnou na koncích uvažovaného intervalu a pro kontrolní proměnnou ve formě rovností. Pomocí první variace jsme obdrželi podmínky optimality prvního řádu ve formě slabého Pontryaginova principu maxima, který zobecňuje Dubois-Reymondovo lemma do optimálního řízení a pro časové škály. Odvodili jsme také druhou variaci této úlohy a nezápornost druhé variace jakožto nutnou podmínku optimality druhého řádu. Tento problém optimálního řízení je studován za příslušného předpokladu kontrolovatelnosti (řiditelnosti) a má nebo nemá posun vpřed ve stavové proměnné. Tyto dvě formy této úlohy se ukazují jako ekvivalentní.

Návaznosti

GA201/07/0145, projekt VaV
Název: Diferenční rovnice a dynamické rovnice na ,,time scales'' II
Investor: Grantová agentura ČR, Diferenční rovnice a dynamické rovnice na "time scales" II
KJB100190701, projekt VaV
Název: Asymptotika, oscilace a kvadratické funkcionály v teorii dynamických rovnic
Investor: Akademie věd ČR, Asymptotika, oscilace a kvadratické funkcionály v teorii dynamických rovnic
ME 891, projekt VaV
Název: Podmínky optimality druhého řádu pro optimalizační problémy
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Podmínky optimality druhého řádu pro optimalizační problémy, Program výzkumu a vývoje KONTAKT (ME)
MSM0021622409, záměr
Název: Matematické struktury a jejich fyzikální aplikace
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Matematické struktury a jejich fyzikální aplikace