D 2009

DNA repair mechanisms in yeast

KREJČÍ, Lumír

Základní údaje

Originální název

DNA repair mechanisms in yeast

Název česky

DNA opravné mechanismy u kvasinek

Vydání

37th Annual Conference o. Bratislava, Slovakia, 37th Annual Conference on Yeast, 113 s. 2009

Nakladatel

Visegrad Strategic Program

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10600 1.6 Biological sciences

Stát vydavatele

Slovensko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Organizační jednotka

Lékařská fakulta

ISSN

Klíčová slova anglicky

DNA repair; DNA damage; replication; genomic instability

Příznaky

Mezinárodní význam
Změněno: 23. 4. 2010 15:30, doc. Mgr. Lumír Krejčí, Ph.D.

Anotace

V originále

DNA replication is typically highly processive mechanism with astonishing precision, despite the fact that it frequently encounters barriers caused by endogenous and exogenous genotoxic agents. It is not surprising that DNA replication does not act alone, but operates in coordination with homologous recombination (HR), and other DNA repair processes to overcome such replication obstacles to ensure cellular viability, and achieve genomic stability. Numerous mechanisms by which replication forks can be restarted following arrest have been described. Some of the pathways enable the cells to deal with such impediments while keeping the fork in place, including repriming, template switch, and translesion synthesis, others may provoke partial or complete fork collapse followed by fork reversal. This could not only provide time and space for repair but also liberate the new strand to undergo template switch. Alternatively, the fork can be cleaved, creating the DSB break that is repaired by recombination machinery with ability to restart the replication fork. Inability to remove toxic DNA structures often leads to their accumulation, higher mutation frequency and eventually to cancer or other diseases associated with genomic instability.

Česky

DNA replication is typically highly processive mechanism with astonishing precision, despite the fact that it frequently encounters barriers caused by endogenous and exogenous genotoxic agents. It is not surprising that DNA replication does not act alone, but operates in coordination with homologous recombination (HR), and other DNA repair processes to overcome such replication obstacles to ensure cellular viability, and achieve genomic stability. Numerous mechanisms by which replication forks can be restarted following arrest have been described. Some of the pathways enable the cells to deal with such impediments while keeping the fork in place, including repriming, template switch, and translesion synthesis, others may provoke partial or complete fork collapse followed by fork reversal. This could not only provide time and space for repair but also liberate the new strand to undergo template switch. Alternatively, the fork can be cleaved, creating the DSB break that is repaired by recombination machinery with ability to restart the replication fork. Inability to remove toxic DNA structures often leads to their accumulation, higher mutation frequency and eventually to cancer or other diseases associated with genomic instability.

Návaznosti

GA301/09/1917, projekt VaV
Název: Štěpení replikačních-rekombinačních DNA meziproduktů a jejich úloha při nestabilitě genomu
Investor: Grantová agentura ČR, Štěpení replikačních-rekombinačních DNA meziproduktů a jejich úloha při nestabilitě genomu
GD203/09/H046, projekt VaV
Název: Biochemie na rozcestí mezi in silico a in vitro
Investor: Grantová agentura ČR, Biochemie na rozcestí mezi in silico a in vitro
LC06030, projekt VaV
Název: Biomolekulární centrum
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Biomolekulární centrum
MSM0021622413, záměr
Název: Proteiny v metabolismu a při interakci organismů s prostředím
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Proteiny v metabolismu a při interakci organismů s prostředím