2009
Information Content Analysis in Automated Microscopy Imaging using an Adaptive Autofocus Algorithm for Multimodal Functions
BRÁZDILOVÁ, Silvie Luisa a Michal KOZUBEKZákladní údaje
Originální název
Information Content Analysis in Automated Microscopy Imaging using an Adaptive Autofocus Algorithm for Multimodal Functions
Název česky
Analýza informačního obsahu v automatizované mikroskopii pomocí adaptivního samozaostřovacího algoritmu pro multimodální fuknce
Autoři
BRÁZDILOVÁ, Silvie Luisa (203 Česká republika, domácí) a Michal KOZUBEK (203 Česká republika, garant, domácí)
Vydání
Journal of Microscopy, Oxford, Blackwell Science, 2009, 0022-2720
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
20200 2.2 Electrical engineering, Electronic engineering, Information engineering
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.612
Kód RIV
RIV/00216224:14330/09:00035554
Organizační jednotka
Fakulta informatiky
UT WoS
000271974200005
Klíčová slova anglicky
automated microscopy; information content analysis; autofocusing; normalized variance
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 3. 2018 16:43, prof. RNDr. Michal Kozubek, Ph.D.
V originále
We present a new algorithm to analyse information content in images acquired using automated fluorescence microscopy. The algorithm belongs to the group of autofocusing methods, but differs from its predecessors in that it can handle thick specimens and operate also in confocal mode. It measures the information content in images using a "content function", which is essentially the same concept as a focus function. Unlike previously presented algorithms, this algorithm tries to find all significant axial positions in cases where the content function applied to real data is not unimodal, which is often the case. This requirement precludes using algorithms that rely on unimodality. Moreover, choosing a content function requires careful consideration, because some functions suppress local maxima. First, we test 19 content functions and evaluate their ability to show local maxima clearly. The results show that only six content functions succeed. To save time, the acquisition procedure needs to vary the step size adaptively, because a wide range of possible axial positions has to be passed so as not to miss a local maximum. The algorithm therefore has to assess the steepness of the content function on-line so that it can decide to use a bigger or smaller step size to acquire the next image. Therefore, the algorithm needs to know about typical behaviour of content functions. We show that for Normalized Variance, one of the most promising content functions, this knowledge can be obtained after normalizing with respect to the theoretical maximum of this function, and using hierarchical clustering. The resulting algorithm is more reliable and efficient than a simple procedure with constant steps.
Česky
Práce se věnuje analýze informačního obsahu v automatizované mikroskopii pomocí adaptivního samozaostřovacího algoritmu pro multimodální fuknce
Návaznosti
LC535, projekt VaV |
| ||
MSM0021622419, záměr |
| ||
2B06052, projekt VaV |
|