2009
Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks
HAVEL, JosefZákladní údaje
Originální název
Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks
Název česky
Predikce adsorpce farmak a produktů osobní péče v půdách pomocí neuronových sítí
Autoři
HAVEL, Josef (203 Česká republika, garant)
Vydání
The Analyst : an international analytical science journal [vol. 120 (1995)- Cambridge, The Royal Society of Chemistry, 2009, 0003-2654
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10406 Analytical chemistry
Stát vydavatele
Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 3.272
Kód RIV
RIV/00216224:14310/09:00036970
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000264482300005
Klíčová slova česky
Adsorpce farmaka osobní péče umělé neuronové sítě
Klíčová slova anglicky
Sorption pharmaceuticals personal care products artificial neural networks
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 25. 10. 2009 16:00, prof. RNDr. Josef Havel, DrSc.
V originále
Abstract: A comprehensive analytical investigation of the sorption behaviour of a large selection of over-the-counter, prescribed pharmaceuticals and illicit drugs to agricultural soils and freeze-dried digested sludges is presented. Batch sorption experiments were carried out to identify which compounds could potentially concentrate in soils as a result of biosolid enrichment. Analysis of aqueous samples was carried out directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). For solids analysis, combined pressurised liquid extraction and solid phase extraction methods were used prior to LC-MS/MS. Solid-water distribution coefficients (K-d) were calculated based on slopes of sorption isotherms over a defined concentration range. Molecular descriptors such as log P, pK(a), molar refractivity, aromatic ratio, hydrophilic factor and topological surface area were collected for all solutes and, along with generated Kd data, were incorporated as a training set within a developed artificial neural network to predict Kd for all solutes within both sample types. Therefore, this work represents a novel approach using combined and cross-validated analytical and computational techniques to confidently study sorption modes within the environment. The logarithm plots of predicted versus experimentally determined Kd are presented which showed excellent correlation (R-2 > 0.88), highlighting that artificial neural networks could be used as a predictive tool for this application. To evaluate the developed model, it was used to predict K-d for meclofenamic acid, mefenamic acid, ibuprofen and furosemide and subsequently compared to experimentally determined values in soil. Ratios of experimental/predicted K-d values were found to be 1.00, 1.00, 1.75 and 1.65, respectively.
Česky
Analytické studium adsorpce farmak a produktů osobní péče v půdách a sedimentech