2010
A brute-force approach to vegetation classification
SCHMIDTLEIN, Sebastian, Lubomír TICHÝ, Hannes FEILHAUER a Ulrike FAUDEZákladní údaje
Originální název
A brute-force approach to vegetation classification
Autoři
SCHMIDTLEIN, Sebastian (276 Německo), Lubomír TICHÝ (203 Česká republika, garant), Hannes FEILHAUER (276 Německo) a Ulrike FAUDE (276 Německo)
Vydání
Journal of Vegetation Science, Uppsala, Opulus Press, 2010, 1100-9233
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 2.457
Kód RIV
RIV/00216224:14310/10:00045595
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000283600000014
Klíčová slova anglicky
Cluster optimization; Indicator species; Isomap; Isometric feature mapping; Isopam; Twinspan; Vegetation databases
Změněno: 2. 12. 2010 13:00, doc. Mgr. Lubomír Tichý, Ph.D.
Anotace
V originále
Introduction of a novel approach to the classification of vegetation data (species by plot matrices). This approach copes with a large amount of noise, groups irregularly shaped in attribute space and species turnover within groups. Method The proposed algorithm (Isopam) is based on the classification of ordination scores from isometric feature mapping. Ordination and classification are repeated in a search for either high overall fidelity of species to groups of sites, or high quantity and quality of indicator species for groups of sites. The classification is performed either as a hierarchical, divisive method or as non-hierarchical partitioning. In divisive clustering, resulting groups are subdivided until a stopping criterion is met. Isopam was tested on 20 real-world data sets. The resulting classifications were compared with solutions from eight widely used clustering algorithms. Results When looking at the significance of species fidelities to groups of sites, and at quantity and quality of indicator species, Isopam often achieved high ranks as compared with other algorithms.
Návaznosti
GA206/09/0329, projekt VaV |
| ||
MSM0021622416, záměr |
|