2010
OptimClass: Using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities
TICHÝ, Lubomír, Milan CHYTRÝ, Michal HÁJEK, Stephen S. TALBOT, Zoltán BOTTA-DUKÁT et. al.Základní údaje
Originální název
OptimClass: Using species-to-cluster fidelity to determine the optimal partition in classification of ecological communities
Autoři
TICHÝ, Lubomír (203 Česká republika, garant, domácí), Milan CHYTRÝ (203 Česká republika, domácí), Michal HÁJEK (203 Česká republika, domácí), Stephen S. TALBOT (840 Spojené státy) a Zoltán BOTTA-DUKÁT (348 Maďarsko)
Vydání
Journal of Vegetation Science, Oxford, Wiley-Blackwell, 2010, 1100-9233
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.457
Kód RIV
RIV/00216224:14310/10:00045964
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000274809500008
Klíčová slova anglicky
Cluster analysis; Cover transformation; Dendrogram; Optimal number of clusters; Ordinal clustering; Resemblance measures; Stopping rules; TWINSPAN
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 1. 2011 16:14, prof. RNDr. Milan Chytrý, Ph.D.
Anotace
V originále
Question: Community ecologists are often confronted with multiple possible partitions of a single set of records of species composition and/or abundances from several sites. Different methods of numerical classification produce different results, and the question is which of them, and how many clusters, should be selected for interpretation. We demonstrate a new method for identifying the optimal partition from a series of partitions of the same set of sites, based on number of species with high fidelity to clusters in a partition (faithful species). Methods: The new method, OptimClass, has two variants. OptimClass 1 searches the partition with the maximum number of faithful species across all clusters, while OptimClass 2 searches the partition with the maximum number of clusters that contain at least a preselected minimum number of faithful species. Faithful species are determined based on the P value of the Fisher's exact test, as a measure of fidelity. OptimClass was tested on three vegetation datasets that varied in species richness and internal heterogeneity, using several classification algorithms, resemblance measures and cover transformations. Results: Results from both variants of OptimClass depended on the preselected threshold P value for faithful species: higher P gave higher probability that a partition with more clusters was selected as optimal. Good partitions, in terms of OptimClass criteria, involved flexible beta clustering, and also ordinal clustering. Good partitions were also obtained with TWINSPAN when the required number of clusters was small, or UPGMA when the required number of clusters was large. Poor partitions usually resulted from classifications that used resemblance measures and cover transformations emphasizing differences in species cover; this is not unexpected because OptimClass uses a presence/absence-based fidelity measure. Conclusions: If the aim of a classification is to obtain clusters rich in faithful species, which can be subsequently used as diagnostic species for identification of community types, OptimClass is a suitable method for simultaneous choice of the optimal classification algorithm and optimal number of clusters. It can be computed in the JUICE program.
Návaznosti
GA206/09/0329, projekt VaV |
| ||
MSM0021622416, záměr |
|