2011
			
	    
	
	
    The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states
PASEKA, Jan a Zdenka RIEČANOVÁZákladní údaje
Originální název
The inheritance of BDE-property in sharply dominating lattice effect algebras and (o)-continuous states
	Autoři
PASEKA, Jan (203 Česká republika, garant, domácí) a Zdenka RIEČANOVÁ (703 Slovensko)
			Vydání
 Soft computing, Springer-Verlag GmbH, 2011, 1432-7643
			Další údaje
Jazyk
angličtina
		Typ výsledku
Článek v odborném periodiku
		Obor
10101 Pure mathematics
		Stát vydavatele
Spojené státy
		Utajení
není předmětem státního či obchodního tajemství
		Odkazy
Impakt faktor
Impact factor: 1.880
			Kód RIV
RIV/00216224:14310/11:00055100
		Organizační jednotka
Přírodovědecká fakulta
			UT WoS
000287451000012
		Klíčová slova anglicky
Non-classical logics; MV-algebras; Sharply dominating lattice effect algebras; Basic decomposition of elements; Bifull sub-lattice effect algebras; States
		Příznaky
Mezinárodní význam, Recenzováno
		
				
				Změněno: 10. 4. 2012 18:27, prof. RNDr. Jan Paseka, CSc.
				
		Anotace
V originále
We study remarkable sub-lattice effect algebras of Archimedean atomic lattice effect algebras E, namely their blocks M, centers C(E), compatibility centers B(E) and sets of all sharp elements S(E) of E. We show that in every such effect algebra E, every atomic block M and the set S(E) are bifull sub-lattice effect algebras of E. Consequently, if E is moreover sharply dominating then every atomic block M is again sharply dominating and the basic decompositions of elements (BDE of x) in E and in M coincide. Thus in the compatibility center B(E) of E, nonzero elements are dominated by central elements and their basic decompositions coincide with those in all atomic blocks and in E. Some further details which may be helpful under answers about the existence and properties of states are shown. Namely, we prove the existence of an (o)-continuous state on every sharply dominating Archimedean atomic lattice effect algebra E with B(E) not equal C(E). Moreover, for compactly generated Archimedean lattice effect algebras the equivalence of (o)-continuity of states with their complete additivity is proved. Further, we prove "State smearing theorem" for these lattice effect algebras.
				Návaznosti
| MSM0021622409, záměr | 
 |