MA010 Graph Theory

Faculty of Informatics
Autumn 2006
Extent and Intensity
2/1. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
prof. RNDr. Petr Hliněný, Ph.D. (lecturer)
Mgr. et Mgr. Pavlína Moravcová Vařeková (seminar tutor)
doc. Mgr. Jan Obdržálek, PhD. (seminar tutor)
Guaranteed by
prof. RNDr. Mojmír Křetínský, CSc.
Faculty of Informatics
Contact Person: prof. RNDr. Petr Hliněný, Ph.D.
Wed 18:00–19:50 D3
  • Timetable of Seminar Groups:
MA010/01: each even Thursday 16:00–17:50 C511, P. Moravcová Vařeková
MA010/02: each odd Thursday 16:00–17:50 C511, P. Moravcová Vařeková
MA010/03: each even Thursday 18:00–19:50 C511, P. Moravcová Vařeková
MA010/04: each odd Thursday 18:00–19:50 C511, P. Moravcová Vařeková
MA010/05: each even Thursday 14:00–15:50 C511, J. Obdržálek
MA010/06: each odd Thursday 14:00–15:50 C511, J. Obdržálek
! M010 Combinatorics and Graph Theory
Basic mathematics, sets, relations, induction.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 150 student(s).
Current registration and enrolment status: enrolled: 0/150, only registered: 0/150, only registered with preference (fields directly associated with the programme): 0/150
fields of study / plans the course is directly associated with
Course objectives
This is an introductory course in graph theory. Basic concepts, graph properties, formulation of simple graph problems, and simple efficient algorithms for their solving, are presented. Although the content of this course is targetted at CS students, it is accessible also to others.
  • Graphs and relations. Subgraphs, isomorphism, degrees, implementation. Directed graphs.
  • Graph connectivity, algorithms for searching. Multiple connectivity, edge-connectivity. Eulerian graphs.
  • Distance in graphs, Dijkstra's algorithm, graph metric and its computation.
  • Trees and their characterizations, tree isomorphism, rooted trees.
  • Greedy algorithm. Spanning trees, MST problem. Algorithms of Jarnik and Boruvka. Matroids.
  • Network flows: formulation and applications to practical problems. Ford-Fulkerson's algorithm for maximal flow. Applications to matching and representatives.
  • Graph colouring, bipartite graphs and their recognition. Independence, cliques, vertex cover, relevant hard algorithmic problems.
  • Planar embeddings of graphs, Euler's formula and its applications. Planar graph colouring. Crossing number.
  • Selected advanced topics (time allowing): Intersection graph representations, chordal graphs, tree-width +, minors, embedding on surfaces and planar covers, graph drawing - "spring embedder".
  • Petr Hliněný, Teorie grafů,
  • MATOUŠEK, Jiří and Jaroslav NEŠETŘIL. Kapitoly z diskrétní matematiky. Vyd. 2., opr. Praha: Karolinum, 2000. 377 s. ISBN 8024600846. info
  • NEŠETŘIL, Jaroslav and Jiří MATOUŠEK. Invitation to discrete mathematics. Oxford: Clarendon Press, 1998. xv, 410 s. ISBN 0-19-850207-9. info
  • KUČERA, Luděk. Kombinatorické algoritmy. 2. vyd. Praha: Státní nakladatelství technické literatury, 1989. 286 s. info
  • NEŠETŘIL, Jaroslav. Teorie grafů [Nešetřil, 1979]. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1979. 316 s. info
Assessment methods (in Czech)
Zkouška je písemná, skládá se z aplikačně zaměřených základů a z teoretické důkazové části.
Language of instruction
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
Teacher's information
The course is also listed under the following terms Autumn 2002, Autumn 2003, Autumn 2004, Autumn 2007, Autumn 2008, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, Autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, Autumn 2021.
  • Enrolment Statistics (Autumn 2006, recent)
  • Permalink: