#
FI:MB101 Linear models - Course Information

## MB101 Linear models

**Faculty of Informatics**

Autumn 2017

**Extent and Intensity**- 2/2/0. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
**Teacher(s)**- doc. Mgr. Ondřej Klíma, Ph.D. (lecturer)

Mgr. Jana Bartoňová (seminar tutor)

Mgr. Pavel Francírek (seminar tutor)

RNDr. Veronika Hajnová (seminar tutor)

Mgr. Jonatan Kolegar (seminar tutor)

Mgr. Jan Reiss (seminar tutor)

Mgr. Radek Suchánek (seminar tutor)

doc. Mgr. Josef Šilhan, Ph.D. (seminar tutor) **Supervisor**- prof. RNDr. Jan Slovák, DrSc.

Faculty of Informatics

Contact Person: doc. Mgr. Ondřej Klíma, Ph.D.

Supplier department: Faculty of Science **Timetable**- Fri 10:00–11:50 D1, Fri 10:00–11:50 D3
- Timetable of Seminar Groups:

*O. Klíma*

MB101/02: Tue 10:00–11:50 A320,*O. Klíma*

MB101/03: Tue 10:00–11:50 B204,*J. Šilhan*

MB101/04: Tue 12:00–13:50 A320,*J. Bartoňová*

MB101/05: Tue 16:00–17:50 A320,*J. Bartoňová*

MB101/06: Mon 16:00–17:50 B204,*V. Hajnová*

MB101/07: Mon 18:00–19:50 B204,*V. Hajnová*

MB101/08: Tue 12:00–13:50 B204,*J. Kolegar*

MB101/09: Tue 14:00–15:50 B204,*J. Kolegar*

MB101/10: Mon 10:00–11:50 B204,*J. Reiss*

MB101/11: Mon 12:00–13:50 B204,*J. Reiss*

MB101/12: Tue 18:00–19:50 A320,*P. Francírek*

MB101/14: Mon 10:00–11:50 A320,*R. Suchánek*

MB101/15: Mon 18:00–19:50 B410,*R. Suchánek*

MB101/90: Tue 8:00–9:50 A320,*J. Šilhan* **Prerequisites**(in Czech)- !
**MB005**Foundations of mathematics && ! NOW (**MB201**Linear models B ) && !**MB201**Linear models B **Course Enrolment Limitations**- The course is also offered to the students of the fields other than those the course is directly associated with.
**Fields of study the course is directly associated with**- there are 15 fields of study the course is directly associated with, display
**Course objectives**- Introduction to linear algebra and analytical geometry.
**Learning outcomes**- At the end of this course, students should be able to: understand basic concepts of linear algebra and probability; apply these concepts to iterated linear processes; solve basic problems in analytical geometry.
**Syllabus**- The course is the first part of the four semester block of Mathematics. In the entire course, the fundamentals of general algebra and number theory, linear algebra, mathematical analysis, numerical methods, combinatorics, as well as probability and statistics are presented. Content of the course Linear models:
- 1. Warm up (4 weeks) -- scalars, scalar functions, combinatorial examples and identities, finite probability, geometric probability, geometry of the plane, relations and mappings, equivalences and orderings.
- 2. Vectors and matrices (3 weeks) -- vectors, vector space, linear independence, basis, linear mappings, matrices, matrix calculus and determinants, orthogonality, eigenvalues and eigenvectors.
- 3. Linear models (3 weeks) -- systems of linear (in)equalities, linear programming problem, linear difference equations, iterated linear processes (population models) and Markov chains.
- 4. Analytical geometry (2 weeks) -- geometrical applications: line, plane, parametric versus non-parametric descriptions, positioning of planes and lines, projective space extension, angle, length, volume, elementary classification of quadrics.

**Literature**- MOTL, Luboš and Miloš ZAHRADNÍK.
*Pěstujeme lineární algebru*. 3. vyd. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2002. 348 s. ISBN 8024604213. info - RILEY, K.F., M.P. HOBSON and S.J. BENCE.
*Mathematical Methods for Physics and Engineering*. second edition. Cambridge: Cambridge University Press, 2004. 1232 pp. ISBN 0 521 89067 5. info - J. Slovák, M. Panák a kolektiv, Matematika drsně a svižně, učebnice v přípravě

*recommended literature*- MOTL, Luboš and Miloš ZAHRADNÍK.
**Bookmarks**- https://is.muni.cz/ln/tag/FI:MB101!
**Teaching methods**- Two hours of lectures, two hours of tutorial. Lecture covering the theory with illustrative solved problems. Tutorials devoted to solving numerical problems.
**Assessment methods**- During the semester, two obligatory mid-term exams are evaluated (each for max 10 points). In the seminar groups there are 5 tests during the semester. The seminars are evaluated in total by max 5 points. Students, who collect during the semester (i.e., from tests and mid-term exams) less than 8 points, are graded as X and they do not proceed to the final examination. The final exam is two hours long and written for max 20 points. For successful examination (the grade at least E) the student needs in total 22 points or more.
**Language of instruction**- Czech
**Follow-Up Courses****Further Comments**- Study Materials

The course is taught each semester. **Listed among pre-requisites of other courses**- PřF:
**M7190**Game Theory

M1110 || M1111 || FI:MB101 || FI:MB201 || FI:MB003 **MA007**Mathematical Logic

MB005 || MB101|| MB201|| PřF:M1120 || PřF:M1125**MA015**Graph Algorithms

MB005||(MB101&&MB102)||(MB201&&MB102)||(MB101&&MB202)||(MB201&&MB202)||(PřF:M1120)||PROGRAM(N-IN)||PROGRAM(N-AP)**MB201**Linear models B

!MB005 && !NOW(MB101) && !MB101**MV008**Algebra I

(MB005||MB101||MB201) && !MB008- PdF:
**SZ7BK_DTI1**Information Technology 1

!FI:MB101 - PdF:
**SZ7BP_DTI1**Information Technology 1

!FI:MB101

- PřF:

- Enrolment Statistics (Autumn 2017, recent)
- Permalink: https://is.muni.cz/course/fi/autumn2017/MB101