FI:MB003 Linear Algebra and Geometry I - Course Information
MB003 Linear Algebra and Geometry I
Faculty of InformaticsSpring 2006
- Extent and Intensity
- 2/2. 4 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- prof. RNDr. Jan Paseka, CSc. (lecturer)
Mgr. David Kruml, Ph.D. (seminar tutor) - Guaranteed by
- prof. RNDr. Jan Paseka, CSc.
Faculty of Informatics - Timetable
- Tue 16:00–17:50 D3
- Timetable of Seminar Groups:
MB003/02: Mon 9:00–10:50 B003, D. Kruml
MB003/03: Mon 11:00–12:50 B003, D. Kruml
MB003/04: Wed 10:00–11:50 B011, D. Kruml - Prerequisites (in Czech)
- ! M003 Linear Algebra and Geometry I &&! M503 Linear Algebra and Geometry I &&! MB102 Mathematics II &&!NOW( MB102 Mathematics II )
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 11 fields of study the course is directly associated with, display
- Course objectives
- The course is concerned with the fundamentals of linear algebra and geometry. The main part of the course is devoted to matrices, systems of linear equations and linear maps.
- Syllabus
- Scalars, vectors and matrices: Properties of real and complex numbers, vector spaces and their examples, $R^n$ and $C^n$, multiplication of matrices, systems of linear eguations, Gauss elimination, computation of inverse matrices.
- Vector spaces - basic notions: Linear combinations, linear independence, basis, dimension, vector subspaces, intersections and sums of subspaces, coordinates.
- Linear mappings: Definition, kernel and image, linear isomorphism, matrix of linear mapping in given bases, transformation of coordinates.
- Systems of linear equations: Properties of sets of solutions, rank a matrix, existence of solutions.
- Determinants: Permutations, definition and basic properties of determinants, computation of inverse matrices, application to systems of linear equations.
- Affine subspaces in $R^n$: Definition, parametric and implicit description, affine mapping.
- Scalar product in $R^n$: Definition and basic properties of scalar product
- Literature
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na
http://www.math.muni.cz/~slovak . - Zlatoš, Pavol. Lineárna algebra a geometria. Předběžná verze učebních skript MFF UK v Bratislavě.
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita, 1998. 138. elektronicky dostupné na
- Assessment methods (in Czech)
- Bude vyžadováno početní i teoretické zvládnutí přednesené látky (porozumění základním pojmům a větám, jednoduché důkazy).
- Language of instruction
- Czech
- Follow-Up Courses
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.math.muni.cz/~cadek
- Enrolment Statistics (Spring 2006, recent)
- Permalink: https://is.muni.cz/course/fi/spring2006/MB003