FI:PV056 Machine Learning - Course Information
PV056 Machine Learning and Data Mining
Faculty of InformaticsSpring 2012
- Extent and Intensity
- 2/1. 3 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: z (credit).
- Teacher(s)
- doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
RNDr. Petr Kosina, Ph.D. (assistant)
RNDr. Jan Géryk, Ph.D. (assistant)
Mgr. Juraj Jurčo (seminar tutor) - Guaranteed by
- prof. RNDr. Mojmír Křetínský, CSc.
Department of Computer Science – Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Supplier department: Department of Computer Science – Faculty of Informatics - Timetable
- Tue 8:00–9:50 B410
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 39 fields of study the course is directly associated with, display
- Course objectives
- At the end of the course students should be able to use machine learning and data mining methods. They will be able to built tools for mining in data that employ machine learning methods.
- Syllabus
- Introduction to the theory of knowledge discovery in databases. Survey of the most important methods, algorithms and systems. A project is as a part of the course.
- Knowledge discovery in databases. Data mining.
- Basic algorithms of machine learning.
- Preprocessing. Active learning.
- Mining frequent patterns and association rules.
- Inductive query languages.
- PMML
- Text mining, mining in spatio-temporal dat, web mining.
- Literature
- BERKA, Petr. Dobývání znalostí z databází. Vyd. 1. Praha: Academia, 2003, 366 s. ISBN 8020010629. info
- Relational data mining. Edited by Sašo Džeroski - Nada Lavrač. Berlin: Springer, 2001, xix, 398. ISBN 3540422897. info
- HAN, Jiawei and Micheline KAMBER. Data mining : concepts and techniques. 2nd ed. San Francisco, CA: Morgan Kaufmann, 2006, xxviii, 77. ISBN 1558609016. URL info
- Teaching methods
- Lectures, exercises, a project.
- Assessment methods
- Written and oral exam. A defense of a project is as a part of the exam.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually. - Listed among pre-requisites of other courses
- Teacher's information
- http://www.fi.muni.cz/usr/popelinsky/lectures/kdd/
- Enrolment Statistics (Spring 2012, recent)
- Permalink: https://is.muni.cz/course/fi/spring2012/PV056