aVLBC0321c Biochemistry I - practice

Faculty of Medicine
autumn 2020
Extent and Intensity
0/2/0. 3 credit(s). Type of Completion: z (credit).
Taught partially online.
doc. RNDr. Jiří Dostál, CSc. (seminar tutor)
Mgr. Jana Gregorová, Ph.D. (seminar tutor)
MUDr. Miroslava Hlaváčová, Ph.D. (seminar tutor)
MUDr. Michaela Králíková, Ph.D. (seminar tutor)
RNDr. Hana Paulová, CSc. (seminar tutor)
Mgr. Ondřej Peš, Ph.D. (seminar tutor)
Mgr. Jiří Slanina, Ph.D. (seminar tutor)
prof. RNDr. Eva Táborská, CSc. (seminar tutor)
doc. RNDr. Josef Tomandl, Ph.D. (seminar tutor)
Mgr. Marie Tomandlová, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Eva Táborská, CSc.
Department of Biochemistry - Theoretical Departments - Faculty of Medicine
Contact Person: Monika Šudáková
Supplier department: Department of Biochemistry - Theoretical Departments - Faculty of Medicine
Timetable of Seminar Groups
aVLBC0321c/30: Fri 12:00–13:40 A16/213, H. Paulová
aVLBC0321c/31: Fri 12:00–13:40 A16/213, H. Paulová
aVLBC0321c/32: Fri 8:00–9:40 A16/215, E. Táborská
aVLBC0321c/33: Fri 8:00–9:40 A16/215, E. Táborská
aVLBC0321c/34: Fri 10:00–11:40 A16/215, J. Tomandl
aVLBC0321c/35: Fri 10:00–11:40 A16/215, J. Tomandl
aVLBC0321c/36: Thu 13:00–14:40 A16/213, J. Slanina
aVLBC0321c/37: Thu 13:00–14:40 A16/213, J. Slanina
aVLBC0321c/38: Wed 14:00–15:40 A16/215, J. Dostál
aVLBC0321c/39: Wed 14:00–15:40 A16/215, J. Dostál
Prerequisites (in Czech)
aVLBI0222c Medical Biology II - pract. && aVLBF011c Biophysics - pract.
Course Enrolment Limitations
The course is only offered to the students of the study fields the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Seminars (A) and practicals (B) have a common content.The aim of the course is to obtain knowledge on essential metabolic processes on the cellular level. Understanding of these proceses is a base for comprihension of metabolism on the tissue and organ level. In the introductory lessons are summarized basic terms from chemistry needed for understanding of body structure a physico-chemical processes occuring in it (chemical composition of the body, survay of biologically important elements,water, electrolytes, non-electrolytes, osmotic pressure, acid-base, redox and precipitation reactions), the following lectures are focused on biochemichal pathways in cells.
Learning outcomes
At the end of the course students will:
- understand the meaning of basic chemical terms (pH, osmolality, electrolyte, buffer, etc.) and apply this knowledge when describing the properties of body fluids.
- describe the role of macro- and microbiogenic elements in the organism
- discusse the properties and function of enzymes
- describe basic catabolic and anabolic pathways of carbohydrate, lipid and protein metabolism, and their relationships.
- understand the principles of energy production, utilization and deposition at the cellular level.
- explain the function of cell membranes and the principle of compartmentalization at the cellular level and the transport processes on the membrane.
- describe protein synthesis, starting with the replication and transcription, translation and post-translational modifications. Understand the relationship between protein structure and function.
- explain the function of hemoglobin in oxygen transport and maintaining acid-base balance.
- discuss the principles of some diseases at the molecular level.
  • 1A: Introduction to biochemistry.
  • 1B: Electrolytes, osmolality, tonicity, oncotic pressure, osmolal gap.
  • 2A: Acid-base reactions, pH of body fluids.
  • 2B: Buffers, Henderson-Hasselbalch equation.
  • 3A: TEST 1 (sem 1A-2B). Biochemically important organic compounds I (alcohols, aldehydes).
  • 3B: Biochemically important organic compounds II (carboxylic acids and derivatives).
  • 4A: Bioenergetics, Gibbs energy, ATP, redox reactions.
  • 4B: Enzymes, kinetics, saturation curve, inhibition.
  • 5A: Cofactors of enzymes, relation to vitamins.
  • 5B: Citrate cycle, respiratory chain.
  • 6A: Saccharides, structures, nutrition, digestion. Transport of glucose into cells. Glycolysis.
  • 6B: Metabolism of glycogen. Metabolism of fructose and galactose.
  • 7A: TEST 2 (sem 3A-6B). Surfactants (types, physiological roles). Lipids (structures).
  • 7B: Cell membranes, transport.
  • 8A: Lipids in nutrition, digestion. Catabolism of fatty acids, ketone bodies.
  • 8B: Desaturation of fatty acids. Cholesterol.
  • 9A: Metabolism of bile acids, eicosanoids, phospholipids.
  • 9B: Lipophilic vitamins, ROS. Lipoperoxidation.
  • 10A: TEST 3 (sem 7A-9B). Amino acids, proteins, structure, properties.
  • 10B: Hemoglobin, types, function, abnormal types.
  • 11A: Digestion of proteins, general features of amino acid metabolism, synthesis of urea.
  • 11B: Metabolism of amino acids I (catabolism, synthesis of non-essential AA, congenital disorders).
  • 12A: Metabolism of amino acids II (conversions to special products, heme).
  • 12B: TEST 4 (sem 10A-12A). Structure of bases, nucleosides, nucleotides, roles of nucleotides. Metabolism of purine and pyrimidine bases I.
  • 13A: Metabolism of purine and pyrimidine bases II.
  • 13B: DNA, RNA structure, replication, transcription.
  • 14A: Protein synthesis. Post-translation modification, collagen synthesis. Credit test.
  • 14B: Consultations, compensatory lessons.
    required literature
  • Lecture files including lecture notes available in IS
  • Seminar texts available in Information system
  • RODWELL, Victor W., David A. BENDER, Kathleen M. BOTHAM, Peter J. KENNELLY and P. Anthony WEIL. Harper's illustrated biochemistry. Thirty-first edition. New York: McGraw-Hill, 2018. x, 789. ISBN 9781260288421. info
  • KOOLMAN, Jan and Klaus-Heinrich ROEHM. Color Atlas of Biochemistry. 3rd ed. Georg Thieme Verlag, 2013. ISBN 978-3-13-100373-7. info
Teaching methods
Course is based on group discusion to the given topics. The outlines of discusion are in the recommended textbook. Complementary materials are available in section Study materials.
Assessment methods
Full attendance in seminars is the principal condition. If any absence, it must be apologized through Department of Study Affairs up to five days. If apology is recorded in Information System, then student is allowed to make up the absence according to teacher's instructions. Four revision tests are written in seminars, semestral limit for credit is 42. If the semestral limit is not fulfilled, student must write the Credit test (limit 14/30). All absences must be made up before writing the credit test. One repetition of the Credit test is approved. Depending on epidemiological situation, assessment method may be altered. The current conditions will be posted in IS (Study materials – Course-related instructions).
Language of instruction
Further comments (probably available only in Czech)
The course is taught annually.
Information on the extent and intensity of the course: 30.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 2016, Autumn 2017, autumn 2018, autumn 2019.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/med/autumn2020/aVLBC0321c