PdF:MA2BP_CAN3 Seminar of Math. Anal. 3 - Course Information
MA2BP_CAN3 Mathematical Analysis 3 - Seminar
Faculty of EducationSpring 2012
- Extent and Intensity
- 0/2/0. 2 credit(s). Type of Completion: z (credit).
- Teacher(s)
- Mgr. Helena Durnová, Ph.D. (seminar tutor)
doc. Mgr. Vojtěch Žádník, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Jaroslav Beránek, CSc.
Department of Mathematics – Faculty of Education
Supplier department: Department of Mathematics – Faculty of Education - Timetable of Seminar Groups
- MA2BP_CAN3/01: Mon 13:25–15:05 učebna 34, V. Žádník
MA2BP_CAN3/02: Wed 9:45–11:25 učebna 34, V. Žádník
MA2BP_CAN3/03: Wed 11:35–13:15 učebna 34, H. Durnová - Course Enrolment Limitations
- The course is only offered to the students of the study fields the course is directly associated with.
- fields of study / plans the course is directly associated with
- Lower Secondary School Teacher Training in Mathematics (programme PdF, B-SPE)
- Lower Secondary School Teacher Training in Mathematics (programme PdF, B-TV)
- Lower Secondary School Teacher Training in Mathematics (programme PdF, M-ZS5)
- Course objectives
- The aim is to learn usual procedures which are used when solving problems with infinite series and simple first order and second order differential equations. Students should be able to find a sum of a series, to decide about convergence or divergence, and to apply infinite series e.g. in integral calculus. Also they should have some knowledge about mathematical modelling (via differential equations).
- Syllabus
- Problem of finding the sum of convergent series. Problem of deciding whether a series is convergent or divergent. Numerical summation of series. Pointwise and uniform convergence of function series. Interchange of operations of summation and integration, summation and derivation etc. Application of power series. Elementary first order differential equations (separable, homogeneous, linear). Linear second order equations with constant coefficients.
- Literature
- Řehák Pavel. Diferenciální rovnice. Učební text. www.math.muni.cz/~rehak/vyuka.html
- DOŠLÁ, Zuzana, Roman PLCH and Petr SOJKA. Matematická analýza s programem Maple. Díl 2, Nekonečné řady. (The Multivariable Calculus with program Maple. Part 2, Infinite series.). prvni. Brno: Masarykova univerzita, 2002, 453 pp. Matematická analýza s programem Maple, 2. ISBN 80-210-3005-4. Domovská stránka projektu Domovská stránka Díl 1. info
- DULA, Jiří and Jiří HÁJEK. Cvičení z matematické analýzy : obyčejné diferenciální rovnice. 2. vyd. Brno: Masarykova univerzita, 1998, 74 s. ISBN 8021019751. info
- DOŠLÁ, Zuzana and Vítězslav NOVÁK. Nekonečné řady. Vyd. 1. Brno: Masarykova univerzita, 1998, 113 s. ISBN 8021019492. info
- DULA, Jiří and Jiří HÁJEK. Cvičení z matematické analýzy : nekonečné řady. 2. vyd. Brno: Vydavatelství Masarykovy univerzity, 1992, 76 s. ISBN 8021003855. info
- Teaching methods
- Seminar
- Assessment methods
- Two written tests.
- Language of instruction
- Czech
- Further Comments
- Study Materials
The course is taught annually.
- Enrolment Statistics (Spring 2012, recent)
- Permalink: https://is.muni.cz/course/ped/spring2012/MA2BP_CAN3