FA052 Elements of physical theories 2

Faculty of Science
Spring 2020
Extent and Intensity
1/1/0. 3 credit(s). Recommended Type of Completion: z (credit). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Martin Černohorský, CSc. (lecturer)
prof. RNDr. Martin Černohorský, CSc. (seminar tutor)
Guaranteed by
prof. RNDr. Martin Černohorský, CSc.
Department of Theoretical Physics and Astrophysics - Physics Section - Faculty of Science
Contact Person: prof. RNDr. Michal Lenc, Ph.D.
Supplier department: Department of Theoretical Physics and Astrophysics - Physics Section - Faculty of Science
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The aim of the course is
(1) to be able to describe with good understanding the general principles (1a) of the methodology of building up the concepts and (1b) of goings and procedures leading in formulation of the laws;
(2) to apply them in interpreting (2a) Einstein's articles about the relationship energy–mass, (2b) examples in mechanics, (2c) examples encompassing statistics and measurements.
Historical notes and actual remarks are organic parts of the course.
Syllabus
  • 1. Testing, immunization, falsification of the theory.
  • 'No-go of Newton's theory': Existence of the planet Neptun. – 'Indivisibility of the atom': Radioactivity. Large Hadron Collider. – 'Natura non facit saltus': Quantum theory.
  • 2. Relationship energy–mass.
  • (1) Generalization of simultaneous growing of mass and kinetic energy of the accelerated electron (a) to any system of matter, (b) to total energy.
  • (2) Einstein's approximative step in deducting the relationship energy–mass. (3) Einstein's papers about relationship energy–mass.
  • 3. Quantitative characteristics and relations in different coordinate systems.
  • (1) Transformation of static and kinetic characteristics. (2) Free fall. – König's theorem. – Cosmic velocities.
  • 4. Virial theorem and its application.
  • Sun–planet. – Bohr model of hydrogen. – Harmonic oscillator.
  • 5. Ideal gas and its state equation.
  • Derivation of the state equation (a) from experimentally obtained gas laws, (b) by means of the virial theorem. – Homogeneity and isotropy of space. Homogeneity of time. – Equipartition principle. Ergodic hypothesis.
  • 6. Temperature. Heat.
  • Maxwell's ideas on heat. – Phenomenological and microstructure-based definition of temperature. – Thermal energy. – Microwork. – Models of interactions at the interface of systems. Ballistic pendulum. – Definition of heat.
  • 7. The first law of thermodynamics.
  • Three components of 'heat': microwork, radiation, particles. – From the law of inertia to the principle of conservation of energy.
  • 8. Two-atomic model of condensed matter.
  • Force curves of particles. Energy curve of the system.. Characteristic points. Model of thermal dilatation of solids. Phase transformations. Bonding energy.
  • 9. Physical measurement.
  • Accuracy, precision. Precising factors. – Size of molecules. Avogadro law. Loschmidt's number. Size of atoms. Interatomic distances. – IUCr Project 'Precision determination of lattice parameters'.
  • 10. Mach's principles of mechanics.
  • Mach's criticism on Newton's axiomatics. Analysis of its righteousness. –
  • Mach's formulation of the elements of mechanics.
  • 11. Johann Gregor Mendel, Ernst Mach, Georg Placzek, Kurt Gödel.
  • Biographical sketches with hints to significant elements of the theories connected with their works.
  • 12. Recapitulation of the course.
  • Closing discussion with proposals concerning its contents and style of teaching and learning.
  • LITERATURE
  • During the classes the student receives printed aids: (1) Facsimilia of selected pages from uneasily accessible literature. (2) Czech translations of the facsimilia if they are in Latin or in German. (3) Sheets to special topics.
  • The conception of the course uses first of all the following sources:
  • 1. Einstein, A.:
  • 1.1. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. d. Phys. 17 (1905) 132-148.
  • 1.2. Über die von der molekularkinetischen Theorie der Wäme geforderten Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. d. Phys. 17 (1905) 549-560.
  • 1.3. Zur Elektrodynamik bewegter Körper. Ann. d. Phys. 17 (1905) 891-921.
  • 1.4. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann. d. Phys. 18 (1905) 639-641.
  • 1.5. Eine neue Bestimmung der Moleküldimensionen.. Ann. d. Phys. 19 (1906) 289-306.
  • 1.6. Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie. Ann. d. Phys. 20 (1906) 627-633.
  • 1.7. Über die vom Relativitätsprinzip geforderte Trägheit der Energie. Ann. d. Phys. 23 (1907) 371-384.
  • 2. Maxwell, J. C.: Substanz und Bewegung. 1878. Translation of Matter and Motion,. 1876.
  • 3. Newton, I.: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA. Editio ultima. Amstaelodami, Sumptibus Societatis, 1723.
  • 4. Newton, I.: THE PRINCIPIA. Mathematical Principles of Natural Philosophy. A New Translation by I. Bernard Cohen and Anne Whitman assisted by Budenz. Preceded by A Guide to Newton's Principia by I. Bernard Cohen. University of California Press. Berkeley, Los Angeles, London, 1999.
  • 5. Mach, E.: Die Geschichte und die Wurzel des Satzes von der ERHALTUNG DER ARBEIT. Vortrag gehalten in der k. böhm. Gesellschaft der Wissenschaften am 15. Nov. 1871 von E. Mach, Professor der Physik an der Universität Prag. Prag, 1872. J. G. Galve'sche k. k. Buchhandlung (Ottomar Bayer). II+58 S. Vortrag S.1-46, Noten S. 47-58.
  • 6. Mach, E.: Die Mechanik in ihrer Entwicklung, Historisch-kritisch dargestellt. Akademie- Verlag Berlin 1988. (Siebente verbesserte und vermehrte Auflage. F.A. Brockhaus, Leipzig 1912.)
  • 7. Černohorský, M.: Mach's criticism on Newton's axiomatization and the rotation in Lex I. In: Prosser V., Folta J. (eds.): Ernst Mach and the Development of Physics. Conference papers. Karolinum, Prague, 1991. 531 p. Pp. 267-270. (Conference Ernst Mach and the Development of Physics, Prague, 14-16 September 1988.)
  • 8. Černohorský M.: Metrologie mřížkových parametrů. Rozpravy Československé akademie věd, řada technických věd, ročník 78, sešit 5. Academia, Praha, 1968. 82 s., 21 příloh.
Literature
  • HALLIDAY, David, Robert RESNICK and Jearl WALKER. Fundamentals of physics. 5th ed. New York: John Wiley & sons, 1997. vi, 362. ISBN 047109675X. info
  • Informace týkající se literatury jsou uvedeny na závěr Osnovy.
  • Information concerning the literature is to be found at the end of the Syllabus.
Teaching methods
Lecture with discussions
Assessment methods
Type of classwork seminar (workshop) with lectures and discussions. Student's activities: Participation in discussions, short assigned oral presentations (10 minutes), written tests ad hoc.
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/spring2020/FA052