G9500 Minerogenetic processes

Faculty of Science
Autumn 2001
Extent and Intensity
2/1. 3 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Zdeněk Losos, CSc. (lecturer)
prof. RNDr. Milan Novák, CSc. (lecturer)
Mgr. Karel Staněk, Ph.D. (lecturer)
Guaranteed by
doc. Ing. Šárka Hladilová, CSc.
Department of Geological Sciences – Earth Sciences Section – Faculty of Science
Contact Person: Běla Hrbková
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Origin of granitic pegmatites and their minerals - role of fluida in their orign. The four classes of granitic pegmatites (abyssal, muscovite, rare-element, miarolitic), their origin. Classification of pegmatites of the rare-element class and pegmatite types: rare-earth with allanite-monazite and gadolinite subtypes* beryl with beryl-columbite, beryl-columbite-phosphate subtypes, complex with spodumene, petalite, lepidolite, elbaite, amblygonite subtypes* albite-spodumene, albite. Characteristic of the rare-element pegmatites. Their shape, attitude and size, internal structure, mineralogy, geochemistry, models of internal pegmatite consolidation, origin of metasomatic assemblages, fractionation of elements. Relation of pegmatites to parental granites a their space distribution - regional zonality, pegmatite fields, belts and provinces. Theory of hydrothermal process in confrontation with recent hydrothermal activity (volcanoes, hydrotherms on the oceanic floor): a) T - P bounds of hydrothermal process b) chemistry of hydrothermal medium c) forms of material transportation in hydrothermal medium d) gas-fluid inclusions as indicators of hydrothermal medium Hydrothermal paragenesis - overview of mineralization types (Pb-Zn, Cu ores-in copper bearing sandstones) High temperature mineral paragenesis (formerly designated as pneumatolytic) Magmatogenic paragenesis (intramagmatic - platinoids, Cu-Ni-Fe, Fe-Ti, Ni-Co) Origin of minerals from volcanic exhalations. Disintegration processes (including sulphide deposits). Chemogenic sedimentation (evaporites, Fe-ores). Biomineralization. Origin of minerals during diaganesis. Contact metamorphism - mineral associations. Regional metamorphism - mineral associations. Metasomatic alteration and mineralization.
Syllabus
  • Origin of granitic pegmatites and their minerals - role of fluida in their orign. The four classes of granitic pegmatites (abyssal, muscovite, rare-element, miarolitic), their origin. Classification of pegmatites of the rare-element class and pegmatite types: rare-earth with allanite-monazite and gadolinite subtypes* beryl with beryl-columbite, beryl-columbite-phosphate subtypes, complex with spodumene, petalite, lepidolite, elbaite, amblygonite subtypes* albite-spodumene, albite. Characteristic of the rare-element pegmatites. Their shape, attitude and size, internal structure, mineralogy, geochemistry, models of internal pegmatite consolidation, origin of metasomatic assemblages, fractionation of elements. Relation of pegmatites to parental granites a their space distribution - regional zonality, pegmatite fields, belts and provinces. Theory of hydrothermal process in confrontation with recent hydrothermal activity (volcanoes, hydrotherms on the oceanic floor): a) T - P bounds of hydrothermal process b) chemistry of hydrothermal medium c) forms of material transportation in hydrothermal medium d) gas-fluid inclusions as indicators of hydrothermal medium Hydrothermal paragenesis - overview of mineralization types (Pb-Zn, Cu ores-in copper bearing sandstones) High temperature mineral paragenesis (formerly designated as pneumatolytic) Magmatogenic paragenesis (intramagmatic - platinoids, Cu-Ni-Fe, Fe-Ti, Ni-Co) Origin of minerals from volcanic exhalations. Disintegration processes (including sulphide deposits). Chemogenic sedimentation (evaporites, Fe-ores). Biomineralization. Origin of minerals during diaganesis. Contact metamorphism - mineral associations. Regional metamorphism - mineral associations. Metasomatic alteration and mineralization.
Literature
  • Nesse, William D. Introduction to Mineralogy, 2000, Oxford university press, ISBN 0-19-510691-1, 442 pp.
  • Philpotts, Anthony R. Principles of igneous and metamorphic petrology, 1990, Prentice Hall, ISBN 0-13-691361-X, 498pp., London, Sydney, Toronto.
  • SLAVÍK, František, Jiří NOVÁK and Jaroslav KOKTA. Mineralogie. 5. přeprac. a dopl. vyd. Praha: Academia. 486 s. 1974. info
  • ZOLTAI, Tibor and James H. STOUT. Mineralogy :concepts and principles. Minneapolis, Minnesota: Burgess publishing company. x, 505 s. ISBN 0-8087-2606-4. 1985. info
  • KLEIN, Cornelis and Cornelius S. HURLBUT. Manual of mineralogy : (after James D. Dana). 21st ed. New York: John Wiley & Sons. xii, 681 s. ISBN 0-471-57452-X. 1993. info
Assessment methods (in Czech)
Přednášky, cvičení ústní zkouška
Language of instruction
Czech
Further Comments
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Autumn 1999, Autumn 2000.
  • Enrolment Statistics (recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2001/G9500