#
PřF:M3150 Algebra II - Course Information

## M3150 Algebra II

**Faculty of Science**

Autumn 2011 - acreditation

The information about the term Autumn 2011 - acreditation is not made public

**Extent and Intensity**- 2/2/0. 4 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: zk (examination).
**Teacher(s)**- prof. RNDr. Radan Kučera, DSc. (lecturer)

prof. RNDr. Radan Kučera, DSc. (seminar tutor) **Guaranteed by**- prof. RNDr. Radan Kučera, DSc.

Department of Mathematics and Statistics - Departments - Faculty of Science **Prerequisites**(in Czech)-
**M2150**Algebra I

Zvládnutí základů matematiky a kurzu Algebra I. **Course Enrolment Limitations**- The course is also offered to the students of the fields other than those the course is directly associated with.
**fields of study / plans the course is directly associated with**- Mathematics (programme PřF, M-MA)
- Mathematics (programme PřF, N-MA)

**Course objectives**- At the end of this course, students should be able to:

* understand rudiments of group theory, ring theory and lattice theory;

* understand rudiments of universal algebra;

* explain basic notions and relations among them. **Syllabus**- Rings and polynomials (ideals, factorrings, fields, skewfields, extensions, finite fields, symmetric polynomials).
- Lattices (semilattices and lattices - two approaches, modular and distributive lattices, Boolean algebras, representation of finite distributive lattices and Boolean algebras).
- Universal algebra (subalgebras, homomorphisms, congruences and factoralgebras, products, terms, varieties, free algebras, Birkhoff's theorem).

**Literature**- ROSICKÝ, Jiří.
*Algebra*. 4., přeprac. vyd. Brno: Masarykova univerzita, 2002. 133 s. ISBN 80-210-2964-1. info - BICAN, Ladislav and Jiří ROSICKÝ.
*Teorie svazů a univerzální algebra*. 1. vyd. Praha: Ministerstvo školství, mládeže a tělovýchovy ČSR, 1989. 84 s. info - PROCHÁZKA, Ladislav.
*Algebra*. 1. vyd. Praha: Academia, 1990. 560 s. info

- ROSICKÝ, Jiří.
**Teaching methods**- Lectures: theoretical explanation. Exercises: solving problems with the aim to understand basic concepts and theorems, homeworks.
**Assessment methods**- Examination consists of two parts: written test and oral examination.
**Language of instruction**- Czech
**Further comments (probably available only in Czech)**- The course is taught annually.

The course is taught: every week. **Listed among pre-requisites of other courses****Teacher's information**- http://www.math.muni.cz/~kucera

- Enrolment Statistics (Autumn 2011 - acreditation, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2011-acreditation/M3150