BA580 Developmetal genetics

Faculty of Science
Spring 2000
Extent and Intensity
2/0/0. 2 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Boris Vyskot, DrSc. (lecturer), prof. RNDr. Jiřina Relichová, CSc. (deputy)
Guaranteed by
prof. RNDr. Boris Vyskot, DrSc.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: prof. RNDr. Boris Vyskot, DrSc.
Prerequisites
B3060 Basic genetics && ( B4020 Molecular biology || B4030 Molecular biology || B6130 Molecular biology )
Foreign students are welcome (a relevant literature in English is available).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 6 fields of study the course is directly associated with, display
Syllabus
  • DEVELOPMENTAL GENETICS: 1 Basic processes in development of eukaryotic organisms 1.1 History of developmental biology 1.2 Basic terms in developmental biology and genetics 2 Reproduction processes in animals and plants 2.1 Asexual reproduction 2.2 Sexual reproduction 2.2.1 Gametes and fertilization 3 Early development in animals 3.1 Cleavage and gastrulation 3.2 Differentiation and pattern formation 3.3 Theories and models of development 4 Biology and genetics of development on model organisms 4.1 Animals 4.1.1 Dictyostelium discoideum 4.1.2 Hydra 4.1.3 Caenorhabditis elegans 4.1.4 Drosophila melanogaster 4.1.5 Vertebrates 4.2 Plants 4.2.1 Acetabularia 4.2.2 Fucus 4.2.2 Angiosperm plants 4.3 Comparison of animal and plant development 5 Molecular control of developmental processes 5.1 Control of transcription and posttranscriptional processes 5.2 Maternal genes 5.3 Homeotic genes, structure and function 5.4 Role of proteins with chromodomains 5.5 Specific features of differentiation in animals and plants 6 Control of sex differentiation 6.1 Principles of sex determination in animals and plants 6.1.1 Genetic control of sex determination 6.1.2 Sex chromosomes, structure and function 6.1.3 Environmental sex determination 6.2 Germ line and control of sexual phenotype 7 Epigenetic processes in development 7.1 Chromatin structure and modification 7.1.1 DNA methylation 7.1.2 Acetylation of nucleosomal histones 7.2 Genomic imprinting and parental conflict 7.2.1 Role of genomic imprinting in mammals 7.2.2 Imprinting in plant endosperm 7.3 Gene silencing, principles and practice 7.3.1 Constitutive and facultative heterochromatin 7.3.2 Mechanisms of gene dosage compensation 7.3.3 Paramutation, position-variegation effect and transvection
Literature
  • B. Vyskot: Přehled vývojové biologie a genetiky. Skriptum, ÚMG AV Praha, 1999 (ISBN 80-902588-1-6)
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
Teacher's information
http://www.ibp.cz/labs/PDG/
The course is also listed under the following terms Spring 2001, Spring 2002.
  • Enrolment Statistics (Spring 2000, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2000/BA580