F4090 Electrodynamics and theory of relativity

Faculty of Science
Spring 2008
Extent and Intensity
2/2/0. 3 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. Mgr. Dominik Munzar, Dr. (lecturer)
doc. Mgr. Jiří Chaloupka, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. Mgr. Dominik Munzar, Dr.
Timetable
Tue 9:00–10:50 F1 6/1014
  • Timetable of Seminar Groups:
F4090/01: Wed 16:00–17:50 F1 6/1014, J. Chaloupka
F4090/02: Mon 16:00–17:50 F3,03015, J. Chaloupka
Prerequisites (in Czech)
( F1030 Mechanics and molecular physic && F2050 Electricity and magnetism )||( F1040 Mechanics and molecular physic && F2070 Electricity and magnetism )
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Basic Course of Classical Electrodynamics and Special Theory of Relativity.
Syllabus
  • 1. Introduction: Context and Outline of the Course. 2. Electrostatics: Basic Notions, Laws, Equations; Electric Field of Selected Simple Arrangments of Charges; Methods for Solving Electrostatical Problems; Elecrostatics of Dielectric Materials. 3. Magnetostatics: Basic Notions, Laws and Equations; Magnetic Field of Selected Simple Arrangments of Currents; Magnetostatics of Magnetic Materials. 4. Maxwell Equations (ME): Faraday's Law of Induction and ME for Quasistatic Fields; General Form of ME; Electromagnetic Potentials of Time-Dependent Fields; Fields of Point Charge; Electrodynamics of Materials. 5. Electromagnetic Waves in Bounded and Unbounded Geometries (Plane Waves, Resonant Cavities, Waveguides), Fields Generated by a Localized Oscillating Source. 6. Special Theory of Relativity (STR): Principles, Lorentz Transformation and Some Consequences, Relations between Energy, Momentum, and Mass of a Particle; Minkowski Space; Transformation Properties of the Electromagnetic Field and Covariance of ME.
Literature
  • JACKSON, John David. Classical electrodynamics. 2nd ed. New York: John Wiley & Sons, 1975, xxii, 848. ISBN 047143132X. info
  • LANDAU, Lev Davidovič and Jevgenij Michajlovič LIFŠIC. The classical theory of fields. Translated by Morton Hamermesh. 4th rev. Engl. ed. Oxford: Elsevier Butterworth-Heinemann, 1975, xiii, 428. ISBN 0-7506-2768-9. info
  • FEYNMAN, Richard Phillips, Robert B. LEIGHTON and Matthew L. SANDS. Feynmanovy přednášky z fyziky s řešenými příklady. 1. vyd. Havlíčkův Brod: Fragment, 2001, 806 s. ISBN 8072004204. info
  • HALLIDAY, David, Robert RESNICK and Jearl WALKER. Fyzika, část 3, Elektřina a magnetismus (Physics). 1st ed. Brno, Praha: Vutium, Prometheus, 2001. ISBN 80-214-1868-0. info
Assessment methods
The final examination consists both of the written and the oral parts.
Language of instruction
Czech
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2019, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2008, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2008/F4090