PřF:F6150 Advanced numerical methods - Course Information
F6150 Advanced numerical methods
Faculty of ScienceSpring 2012
- Extent and Intensity
- 2/1/0. 3 credit(s) (plus extra credits for completion). Type of Completion: graded credit.
- Teacher(s)
- doc. RNDr. Jan Celý, CSc. (lecturer)
doc. RNDr. Jan Celý, CSc. (seminar tutor) - Guaranteed by
- prof. RNDr. Josef Humlíček, CSc.
Department of Condensed Matter Physics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Josef Humlíček, CSc.
Supplier department: Department of Condensed Matter Physics – Physics Section – Faculty of Science - Timetable
- Tue 15:00–16:50 Fs1 6/1017, Thu 13:00–13:50 Fs1 6/1017
- Prerequisites (in Czech)
- F5330 Basic numerical methods
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Biophysics (programme PřF, M-FY)
- Physics (programme PřF, B-FY)
- Physics (programme PřF, M-FY)
- Physics (programme PřF, N-FY)
- Course objectives
- The main objective of the course is to provide the students with the ability to
- list and describe the lectured numerical methods
- apply these methods in particular modelling tasks - Syllabus
- 1. Polynomial interpolation and aproximation.
- 2. Cubic interpolation spline.
- 3. Data smoothing,smoothing spline.
- 4. Numerical differentiation.
- 5. Numerical quadrature: Newton-Cotes methods, Richardson extrapolation and Romberg quadrature, Gauss methods.
- 6. Minimization of functions.
- 7. Multidimensional optimization, nonlinear regression.
- 8. Initial-value problem for ordinary differential equations: Runge-Kutta methods, multistep methods. 9. Boundary-value problem for ordinary differential equations. 10. Introduction to numerical solution of partial differential equations: heat equation in 1D, Laplace problem in 2D.
- 11. Discrete Fourier transform, fast Fourier transform.
- Literature
- PŘIKRYL, Petr. Numerické metody matematické analýzy. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1985, 187 s. URL info
- ATKINSON, Kendall E. Elementary numerical analysis. 2nd ed. New York: John Wiley & Sons, 1993, xiii, 425. ISBN 0471600105. info
- MÍKA, Stanislav. Numerické metody algebry. 2. vyd. Praha: SNTL - Nakladatelství technické literatury, 1985, 169 s. URL info
- CELÝ, Jan. Řešení fyzikálních úloh na mikropočítačích. 1. vyd. Brno: Rektorát Masarykovy university, 1990, 108 s. ISBN 8021001267. info
- CELÝ, Jan. Programové moduly pro fyzikální výpočty. 1. vyd. Brno: Rektorát UJEP, 1985, 99 s. info
- RALSTON, Anthony. Základy numerické matematiky. Translated by Milan Práger - Emil Vitásek. České vyd. 2. Praha: Academia, 1978, 635 s. info
- VITÁSEK, Emil. Numerické metody. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1987, 512 s. URL info
- GIORDANO, Nicholas J. and Hisao NAKANISHI. Computational physics. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 1997, xiii, 544. ISBN 0131469908. info
- PANG, Tao. An introduction to computational physics. 2nd ed. Cambridge: Cambridge University Press, 2006, xv, 385. ISBN 0521825695. info
- GOULD, Harvey, Jan TOBOCHNIK and Wolfgang CHRISTIAN. An introduction to computer simulation methods : applications to physical systems. 3rd ed. San Francisco: Pearson Addison Wesley, 2007, xviii, 796. ISBN 0805377581. info
- KOONIN, Steven E. and Dawn C. MEREDITH. Computational physics : Fortran version. Boulder, Colo.: Westview Press, 1990, 16, 639. ISBN 0201386232. info
- Teaching methods
- Lecture + individual work on PC.
- Assessment methods
- Demands for graded credit: oral examination of topics knowledge on lectured topics + presentation of sufficient results of individual work during the semester.
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://monoceros.physics.muni.cz/~jancely
- Enrolment Statistics (Spring 2012, recent)
- Permalink: https://is.muni.cz/course/sci/spring2012/F6150