C8500 Organic Reaction Mechanisms

Faculty of Science
Spring 2019
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium).
Teacher(s)
prof. RNDr. Petr Klán, Ph.D. (lecturer)
Guaranteed by
prof. RNDr. Petr Klán, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Timetable
Mon 18. 2. to Fri 17. 5. Mon 9:00–10:50 A08/309
Prerequisites
C7410 Structure and Reactivity &&NOW( C8510 Org. React. Mechanisms-sem. )
organic chemistry, physical chemistry
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 14 fields of study the course is directly associated with, display
Course objectives
This course is a follow up of the course of Structure and Reactivity. The aim of this course is for students to gain knowledge of elemental steps of chemical transformations and reactive intermediates and to help them to use the scientific literature in the corresponding field and interpret the results from the experimental and theoretical studies.
Learning outcomes
In the end of this course, the student will be able to understand the details of the mechanisms of chemical transformations, which are studied using chemical and physical tools.
Syllabus
  • 1. Writing Organic Reaction Mechanisms. Electron configurations. Electron pushing. Symbolism. 2. Experimental Tools to Study Reaction Mechanisms. Kinetics and thermodynamics. Identification of products. Crossover studies. Isotopic labeling. Stereochemistry. Trapping of reactive intermediates. 3. Reactive Intermediates. Carbocations. Carbanions, Radicals. Carbenes. Nitrenes. Arynes. Ketenes. Electron-deficient compounds. 4. Electrophilic Addition to Multiple Bonds. Halogenation. Oxymercuration. Hydroboration. Epoxidation. Addition to Alkynes. 5. Reactions of Carbonyl and Carboxyl Compounds. Stereoelectronic effects of addition. Hydrolysis. Acid/base catalyzed reactions. Hydrolysis of acetals and esters. Tautomerism. Reduction. Cannizzaro reaction. Grignard reaction. Michael reaction. Witting reaction. 6. Elimination Reactions. E1, E2 and E1CB mechanisms. Stereo- and regioselectivity of eliminations. Zaitsev's rule. Hofmann elimination. 1,1-Eliminations. 7. Electrophilic Aromatic Substitution. SEAr mechanisms; σ-complex; substituent effects. Quantitative comparison of SEAr rates. Peri interactions and ipso substitutions. 8. Nucleophilic Aromatic and Vinylic Substitution. SNAr mechanisms. Jackson-Meisenheimer complex; aryne. Nucleophilic vinylic substitution. 9. Nucleophilic Aliphatic Substitution. SN1 and SN2. Substitution involving electron transfer. 10. Radical Reactions. Substitution and addition reactions. Fragmentations. Chain processes. Rearrangements. Redox processes. Electron transfer reactions. 11. Organometallic Reactions. Transition-metal complexes. Reaction types. Metal-mediated reactions. Metal-catalyzed reactions. 12. Pericyclic reactions. Selection rules. Cycloaddition. Electrocyclization. Sigmatropic rearrangement. Ene reaction. 13. Photochemical Reactions. Excited-state reactivity. Photocycloaddition. Photoinduced hydrogen transfer. Photoelimination. Singlet oxygen reactions. Photocatalysis.
Literature
    required literature
  • ANSLYN, Eric V. and Dennis A. DOUGHERTY. Modern physical organic chemistry. Sausalito, Calif.: University Science Books, 2006, xxviii, 10. ISBN 1891389319. info
    recommended literature
  • CARROLL, Felix A. Solutions manual for perspectives on structure and mechanism in organic chemistry. Second edition. Hoboken, New Jersey: John Wiley & Sons, 2011, v, 141. ISBN 9780470261156. info
Teaching methods
Lectures.
Assessment methods
One written final test (50% of correct answers is needed to pass) + the oral exam.
Language of instruction
English
Follow-Up Courses
Further Comments
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
Teacher's information
https://is.muni.cz/auth/el/1431/jaro2006/C8500/
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, spring 2012 - acreditation, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, spring 2018, Spring 2020, Spring 2021, Spring 2022, Spring 2023, Spring 2024, Spring 2025.
  • Enrolment Statistics (Spring 2019, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2019/C8500