FI:IA177 Neurosymbolic AI - Informace o předmětu
IA177 Neurosymbolic AI
Fakulta informatikyjaro 2026
Předmět se v období jaro 2026 nevypisuje.
- Rozsah
- 2/0/0. 2 kr. (plus ukončení). Ukončení: zk.
Vyučováno kontaktně - Vyučující
- RNDr. Vít Musil, Ph.D. (přednášející)
- Garance
- RNDr. Vít Musil, Ph.D.
Katedra teorie programování – Fakulta informatiky
Kontaktní osoba: RNDr. Vít Musil, Ph.D.
Dodavatelské pracoviště: Katedra teorie programování – Fakulta informatiky - Předpoklady
- Students should hold a bachelor’s degree in Computer Science or a related field, with a solid grounding in algorithms, formal languages, and discrete mathematics. Familiarity with propositional and first-order logic, probability, and linear algebra is assumed. No prior expertise in advanced machine learning is required.
- Omezení zápisu do předmětu
- Předmět je otevřen studentům libovolného oboru.
- Anotace
- This course provides a theoretical survey of Neurosymbolic AI, a field dedicated to synthesizing the strengths of classical symbolic reasoning and modern deep learning. It is an advanced course for students with a background in theoretical computer science, building upon foundational knowledge of logic, algorithms, and discrete mathematics. The emphasis will be on formal methods and algorithmic principles rather than practical implementation.
- Výstupy z učení
- After completing the course, a student will be able to: - explain the fundamental principles of symbolic reasoning and neural learning, and classify neurosymbolic approaches along different integration paradigms; - analyze and compare core methods such as differentiable logic, neural theorem proving, inductive logic programming, and graph-based reasoning; - apply formal models to evaluate how symbolic constraints can guide neural networks or how symbolic rules can be extracted from trained models; - critically assess neurosymbolic architectures in terms of scalability, interpretability, and theoretical guarantees;
- Klíčová témata
- - Foundations of symbolic reasoning and neural learning, their strengths, weaknesses, and motivation for integration - Differentiable logic and constraint-based learning (logic as a loss function, semantic regularization) - Neural theorem proving and differentiable inductive logic programming - Symbolic rule and program extraction for explainability - Graph neural networks for relational and knowledge-based reasoning - Differentiable programming and neural interpreters - Neurosymbolic reinforcement learning and hierarchical planning - Advanced topics: compositionality, causality, and world models - Applications in program synthesis, robotics, drug discovery, and vision-language tasks - Open research challenges and future directions in neurosymbolic AI
- Přístupy, postupy a metody používané ve výuce
- lectures, class discussion, reading
- Způsob ověření výstupů z učení a požadavky na ukončení
- oral examination
- Vyučovací jazyk
- Angličtina
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden.
- Permalink: https://is.muni.cz/predmet/fi/jaro2026/IA177