MUC51 Pravděpodobnost a statistika

Přírodovědecká fakulta
podzim 2021
Rozsah
2/2/0. 4 kr. Ukončení: zk.
Vyučující
RNDr. Marie Budíková, Dr. (přednášející)
Garance
RNDr. Marie Budíková, Dr.
Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky - Ústavy - Přírodovědecká fakulta
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 7 mateřských oborů, zobrazit
Cíle předmětu
Cílem předmětu je:
seznámit studenty se základními pojmy popisné statistiky a počtu pravděpodobnosti;
ukázat studentům zajímavé příklady, které mohou později využít ve své učitelské praxi;
naučit studenty používat systém STATISTICA.
Výstupy z učení
Po absolvování kurzu studenti
- umí získat informace z datového souboru ve formě tabulek, grafů a číselných charakteristik;
- rozumí základním pravděpodobnostním pojmům, jako je klasická, geometrická a podmíněná pravděpodobnost;
- jsou schopni používat důležitá diskrétní a spojitá pravděpodobnostní rozložení v odpovídajících situacích;
- umí vypočítat střední hodnotu, rozptyl, kovarianci a koeficient korelace diskrétních a spojitých náhodných veličin;
- budou mít dobré znalosti systému STATISTICA.
Osnova
  • Popisná statistika. Základní a výběrový soubor, skalární a vektorové znaky, jejich funkcionální charakteristiky při bodovém a intervalovém zpracování dat. Nominální, ordinální, intervalové a poměrové znaky; jejich číselné charakteristiky.
  • Počet pravděpodobnosti. Empirický zákon velkých čísel, axiomatická definice pravděpodobnostního prostoru a základní vlastnosti pravděpodobnosti. Konstrukce pravděpodobnosti v případě diskrétního základního prostoru, klasická pravděpodobnost. Konstrukce pravděpodobnosti na poli borelovských množin, geometrická pravděpodobnost. Stochasticky nezávislé jevy a podmíněná pravděpodobnost.
  • Náhodné veličiny skalární a vektorové, jejich rozložení v obecném, diskrétním a spojitém případě. Simultánní a marginální rozložení náhodných veličin, stochasticky nezávislé náhodné veličiny, posloupnost nezávislých pokusů, různá diskrétní a spojitá rozložení. Kvantily, střední hodnota, rozptyl, kovariance a koeficient korelace náhodných veličin. Konvergence náhodné posloupnosti, slabý zákon velkých čísel, centrální limitní věta.
Literatura
    povinná literatura
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Popisná statistika. 3., doplněné vyd. Brno: Masarykova univerzita, 1998. 52 s. ISBN 80-210-1831-3. info
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. 3. vyd. Brno: Masarykova univerzita, 2004. 127 s. ISBN 80-210-3313-4. info
    doporučená literatura
  • BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ. Průvodce základními statistickými metodami. vydání první. Praha: Grada Publishing, a.s., 2010. 272 s. edice Expert. ISBN 978-80-247-3243-5. URL info
Výukové metody
Výuka probíhá v rozsahu 2 h přednášky a 2 h cvičení týdně. Část cvičení probíhá v počítačové učebně s využitím speciálního statistického software.
Metody hodnocení
V průběhu semestru studenti píší dva testy. Závěrečná písemná zkouška se skládá ze čtyř příkladů, z nichž lze získat až 100 bodů. K úspěšnému zvládnutí je třeba dosáhnout aspoň 51 bodů. Při zkoušce je možno používat studijní literaturu.
Navazující předměty
Další komentáře
Předmět je vyučován každoročně.
Výuka probíhá každý týden.
Předmět je zařazen také v obdobích podzim 2019.
  • Statistika zápisu (nejnovější)
  • Permalink: https://is.muni.cz/predmet/sci/podzim2021/MUC51