M8180 Nelineární funkcionální analýza

Přírodovědecká fakulta
jaro 2008
Rozsah
2/1/0. 3 kr. (příf plus uk plus > 4). Ukončení: zk.
Vyučující
prof. Alexander Lomtatidze, DrSc. (přednášející)
Garance
prof. Alexander Lomtatidze, DrSc.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Rozvrh
Po 8:00–9:50 UP2
  • Rozvrh seminárních/paralelních skupin:
M8180/01: Po 10:00–10:50 UP2, A. Lomtatidze
Předpoklady
M6150 Lineární funkcionál. analýza I
Matematická analýza I-IV, Lineární funkcionální analýza I a II, Lineární algebra.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
  • Matematika (program PřF, M-MA, směr Matematická analýza)
  • Matematika (program PřF, N-MA, směr Matematická analýza)
Cíle předmětu
Cílem předmětu je seznámit posluchače se základy nelineární funkcionální analýzy, zejména s diferenciálním počtem v normovaných prostorech a aplikacemi. Na konci tohoto kurzu bude student schopen: porozumět základům nelineární funkcionální analýzy; vysvětlit základní pojmy a souvislosti mezi nimi.
Osnova
  • 1. Diferenciální počet v normovaných prostorech 1.1. Silný diferenciál (Freschetův diferenciál) 1.2. Slabý diferenciál (Gateauxův diferenciál) 1.3. Integrál 1.4. Newton-Leibnitzův vzorec 1.5. Derivace vyšších řádů 1.6. Taylorův vzorec 2. Aplikace v extrémálních úlohach 3. Stupeň zobrazení
Literatura
  • Lang, S. Real and Functional Analysis. Third Edition. Springer-Verlag 1993.
  • KOLMOGOROV, Andrej Nikolajevič a Sergej Vasil‘jevič FOMIN. Základy teorie funkcí a funkcionální analýzy. Translated by Vladimír Doležal - Zdeněk Tichý. Vyd. 1. Praha: SNTL - Nakladatelství technické literatury, 1975, 581 s. info
Metody hodnocení
Výuka: přednáška 2 hod. týdně, cvičení 1 hod. týdně. Zkouška: písemná a ústní.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích jaro 2008 - akreditace, jaro 2000, jaro 2001, jaro 2002, jaro 2003, jaro 2004, jaro 2005, jaro 2006, jaro 2007, jaro 2010.