Z8114 Digitální zpracování materiálů DPZ

Přírodovědecká fakulta
podzim 2020
Rozsah
2/2. 6 kr. Ukončení: zk.
Vyučující
Ing. Kateřina Tajovská, Ph.D. (přednášející)
Mgr. Lukáš Slezák (cvičící)
Ing. Kateřina Tajovská, Ph.D. (cvičící)
Garance
Ing. Kateřina Tajovská, Ph.D.
Geografický ústav – Sekce věd o Zemi – Přírodovědecká fakulta
Kontaktní osoba: Ing. Kateřina Tajovská, Ph.D.
Dodavatelské pracoviště: Geografický ústav – Sekce věd o Zemi – Přírodovědecká fakulta
Rozvrh
Po 12:00–13:50 Z4,02028
  • Rozvrh seminárních/paralelních skupin:
Z8114/01: Po 14:00–15:50 Z1,01001b, L. Slezák, K. Tajovská
Z8114/02: St 14:00–15:50 Z1,01001b, L. Slezák, K. Tajovská
Předpoklady
Z8108 Dálkový průzkum Země || PROGRAM(KOS)
Znalosti na úrovni základního kursu dálkového průzkumu Země
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.

Předmět si smí zapsat nejvýše 30 stud.
Momentální stav registrace a zápisu: zapsáno: 0/30, pouze zareg.: 0/30
Mateřské obory/plány
předmět má 12 mateřských oborů, zobrazit
Anotace
Cílem předmětu je předat studentům základní přehled o metodách digitálního zpracování obrazových materiálů získávaných metodou distančního snímání. Ve cvičeních získají studenti praktické dovednosti z oblasti zpracování obrazu s akcentem na postupy automatické klasifikace. Hlavní probíraná témata:
Analogová a digitální forma obrazu.
Interpretace obrazu v analogové formě
Interpretační znaky, rozpoznávání objektu, interpretační klíče
Přednosti a nedostatky analogového zpracování
Charakter digitálních obrazových dat. Rastr a jeho vlastnosti Specifika dat DPZ
Základní druhy rozlišení dat DPZ
Systém uložení digitálních obrazových dat. Obecné a speciální obrazové formáty Obrazová komprese.Podpůrná data
Základní etapy digitálního zpracování obrazových dat Předzpracování obrazových dat, radiometrické a atmosférické korekce Geometrická transformace obrazu
Základní způsoby zvýrazňování, práce s histogramem
Principy automatické klasifikace obrazu. Řízená a neřízená klasifikace.
Zjišťování časových změn. Netradiční přístupy ke klasifikaci. Specifika zpracování radarových a hyperspektrálních dat.
Základní používaný SW: ENVI, SNAP, QGIS (plugin SCP)
Na konci tohoto kurzu bude student schopen porozumět a vysvětlit podstatu základních metod zpracování obrazu vysvětlených v jednotlivých lekcích. Bude schopen vysvětlit, kdy použít jednotlivé metody a předkládat racionální odůvodnění o podmínkách využití metod multispektrální analýzy. Měl by být schopen kvalifikovaných rozhodnutí týkajících se předzpracování družicových dat, aplikací metod a především na základě nabytých znalostí interpretovat a verifikovat výsledky obrazové analýzy.
Výstupy z učení
Na konci tohoto kurzu bude student schopen porozumět a vysvětlit podstatu základních metod zpracování obrazu vysvětlených v jednotlivých lekcích.
Bude schopen vysvětlit, kdy použít jednotlivé metody a předkládat racionální odůvodnění o podmínkách využití metod multispektrální analýzy.
Měl by být schopen kvalifikovaných rozhodnutí týkajících se předzpracování družicových dat, aplikací metod a především na základě nabytých znalostí interpretovat a verifikovat výsledky obrazové analýzy.
Klíčová témata
  • 1. Základní vlastnosti digitálního obrazu - opakování A-D převod, DN hodnoty a jejich význam, histogram obrazového záznamu, multispektrální a hyperspektrální snímky, způsoby vizualizace, barevné systémy, RGB barevný systém
  • 2. Metody předzpracování digitálního obrazu Radiometrické atmosférické korekce - podstata chyb a principy základních algoritmu, geometrická transformace obrazu - přehled běžných metod (polynomická transformace, splinové funkce, transformace po částech, ortorektifikace, mozaikování
  • 3. Metody zvýrazňování digitálního obrazu I. Radiometrická (bodová) zvýraznění, práce s histogramem snímku, úpravy kontrastu, základní druhy zvýraznění, LUT, principy prahování a hustotních řezů
  • 4. Metody zvýrazňování digitálního obrazu II. Prostorová zvýraznění - filtrace obrazu, princip a základní algoritmy vysoko a nízkofrekvenčních filtrů, Fourierovy transformace, texturální analýza a filtrace radarových snímku
  • 5. Metody zvýrazňování multispektrálního digitálního obrazu III. Vícepásmové transformace obrazu, principy tvorby barevných syntéz, transformace barevného systému, IHS x RGB, analýza hlavních komponent, obrazové podíly a spektrální (vegetační) indexy, transformace TASSELED CAP,
  • 6. Řízená klasifikace multispektrálního obrazu I. Princip spektrálních příznaků, obecný postup řízené automatické klasifikace obrazu, trénovací etapa,
  • 7. Řízená klasifikace multispektrálního obrazu II. Per-pixel klasifikátory - k. pravoúhelníku, k. minimální vzdálenosti, k. maximální pravdepodobnosti, generování spektrálních signatur, jejich statistický popis a hodnocení. Postklasifikacní úpravy a hodnocení výsledku klasifikace - chybová matice, testovací množiny.
  • 8. Neřízená klasifikace multispektrálního obrazu Spektrální a informační třídy , princip metody shlukové analýzy multispektrálního obrazu, algoritmy ISODATA a K-MEANS, agregace výsledku neřízené klasifikace, postklasifikacní úpravy
  • 9. Nové přístupy ke klasifikaci digitálního obrazu Fuzzy klasifikátory, princip klasifikace neuronovými sítěmi, texturální klasifikace, kontextuální klasifikace, SAM algoritmus
  • 10. Principy zpracování radarových obrazových dat. Specifika radarového obrazového záznamu, základní algoritmy, filtrace a texturální analýza, příklady použití radarových snímku
  • 11. Principy zpracování hypersektrálních obrazových dat. Hyperspektrální kostka, smíšené a "čisté" pixely, spektrální knihovny, elementární povrchy (endmembers), klasifikace hyperspektrálních dat - unmixing
  • 12. Algoritmy multitemporální analýzy Obrazové podíly a rozdíly, porovnání výsledku klasifikace, Change vector analysis, PCA
Studijní zdroje a literatura
    povinná literatura
  • DOBROVOLNÝ, Petr. Dálkový průzkum Země. Digitální zpracování obrazu. 1. vyd. Brno: Masarykova univerzita, 1998, 208 s. ISBN 8021018127. info
  • LILLESAND, Thomas M.; Ralph W. KIEFER a Jonathan W. CHIPMAN. Remote sensing and image interpretation. 6th ed. New York: John Wiley & Sons, 2008, xii, 756. ISBN 9780470052457. info
  • CAMPBELL, James B. a Randolph H. WYNNE. Introduction to remote sensing. Fifth edition. London: Guilford Press, 2011, xxxi, 667. ISBN 9781609181765. info
    neurčeno
  • Computer processing of remotely sensed imagesan introduction. Edited by Paul M. Mather. 4th ed. Chichester, West Sussex, England: John Wiley & Sons, 2011, xx, 434 p. ISBN 9780470742396. info
  • Remote sensing, models, and methods for image processing. Edited by Robert A. Schowengerdt. 3rd ed. Burlington, MA: Academic Press, 2007, 515 p. ISBN 0123694078. info
  • Urban remote sensing. Edited by Qihao Weng - Dale A. Quattrochi. Boca Raton, Fla.: CRC Press, 2007, 412 s. ISBN 9780849391996. info
  • HALOUNOVÁ, Lena a Karel PAVELKA. Dálkový průzkum Země. Vyd. 1. Praha: Vydavatelství ČVUT, 2005, 192 s. ISBN 8001031241. info
  • LIANG, Shunlin. Quantitative remote sensing of land surfaces. Hoboken, N.J.: John Wiley & Sons, 2004, xxvi, 534. ISBN 0471281662. info
  • Environmental modelling with GIS and remote sensing. Edited by Andrew Skidmore. 1st publ. London: Taylor & Francis, 2002, xvi, 268. ISBN 0415241707. info
Přístupy, postupy a metody používané ve výuce
Přednášky s výkladem základních pojmů z oblasti zpracování obrazu a praktickými řešenými příklady. Cvičení formou samostatné práce na úlohách řešených za pomoci programového vybavení pro analýzu multispektrálních družicových snímků. Podzimní semestr 2020 online výuka přednášek na odkazu https://meet.google.com/btf-itrq-rgn Cvičení prezenčně v Z1
Způsob ověření výstupů z učení a požadavky na ukončení
Zkouška formou písemného testu z odpřednášené látky. Nezbytnou podmínkou k vykonání zkoušky je odevzdání správně vypracovaných praktických cvičení a úspěšné absolvování praktického testu na konci semestru.
Odkaz a informace vyučujících
Předmět je zakončen zkouškou, při níž student prokazuje schopnost aplikování metod digitálního zpracování obrazu při řešení typických geografických úloh, schopnost smysluplně využívat digitálních obrazových dat v GIS.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2007 - akreditace, podzim 2010 - akreditace, jaro 2004, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011, podzim 2011 - akreditace, podzim 2012, podzim 2013, podzim 2014, podzim 2015, podzim 2016, podzim 2017, podzim 2018, podzim 2019, podzim 2021, podzim 2022, podzim 2023, podzim 2024, podzim 2025.