EN

Joint analysis of histopathology image features and gene expression in breast cancer

POPOVICI, Vlad, Eva BUDINSKÁ, Lenka ČÁPKOVÁ, Daniel SCHWARZ, Ladislav DUŠEK, Josef FEIT a Rolf JAGGI. Joint analysis of histopathology image features and gene expression in breast cancer. BMC Bioinformatics, London: BioMed Central, 2016, roč. 17, č. 209, s. 1-9. ISSN 1471-2105. doi:10.1186/s12859-016-1072-z.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Joint analysis of histopathology image features and gene expression in breast cancer
Autoři POPOVICI, Vlad (642 Rumunsko, garant, domácí), Eva BUDINSKÁ (703 Slovensko, domácí), Lenka ČÁPKOVÁ (203 Česká republika, domácí), Daniel SCHWARZ (203 Česká republika, domácí), Ladislav DUŠEK (203 Česká republika, domácí), Josef FEIT (203 Česká republika, domácí) a Rolf JAGGI (756 Švýcarsko).
Vydání BMC Bioinformatics, London, BioMed Central, 2016, 1471-2105.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 3.2 Clinical medicine
Stát vydavatele Spojené království
Utajení není předmětem státního či obchodního tajemství
Impakt faktor Impact factor: 2.448
Kód RIV RIV/00216224:14110/16:00088933
Organizační jednotka Lékařská fakulta
Doi http://dx.doi.org/10.1186/s12859-016-1072-z
UT WoS 000375849000001
Klíčová slova anglicky Histopathology images; Image analysis; Biomarker discovery; Gene expression; Multimodal data mining
Štítky EL OK, podil
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Ing. Mgr. Věra Pospíšilíková, učo 9005. Změněno: 19. 12. 2016 17:58.
Anotace
Background: Genomics and proteomics are nowadays the dominant techniques for novel biomarker discovery. However, histopathology images contain a wealth of information related to the tumor histology, morphology and tumor-host interactions that is not accessible through these techniques. Thus, integrating the histopathology images in the biomarker discovery workflow could potentially lead to the identification of new image-based biomarkers and the refinement or even replacement of the existing genomic and proteomic signatures. However, extracting meaningful and robust image features to be mined jointly with genomic (and clinical, etc.) data represents a real challenge due to the complexity of the images. Results: We developed a framework for integrating the histopathology images in the biomarker discovery workflow based on the bag-of-features approach - a method that has the advantage of being assumption-free and data-driven. The images were reduced to a set of salient patterns and additional measurements of their spatial distribution, with the resulting features being directly used in a standard biomarker discovery application. We demonstrated this framework in a search for prognostic biomarkers in breast cancer which resulted in the identification of several prognostic image features and a promising multimodal (imaging and genomic) prognostic signature. The source code for the image analysis procedures is freely available. Conclusions: The framework proposed allows for a joint analysis of images and gene expression data. Its application to a set of breast cancer cases resulted in image-based and combined (image and genomic) prognostic scores for relapse-free survival.
Návaznosti
NT14134, projekt VaVNázev: Integrativní vývoj multimodálního rizikového skóre pro odhad relapsu u pacientek s karcinomem prsu.
VytisknoutZobrazeno: 22. 4. 2019 12:28

Další aplikace