J 2018

Measurement of doping profiles by a contactless method of IR reflectance under grazing incidence

HOLOVSKÝ, Jakub; Zdeněk REMEŠ; Aleš PORUBA; Daniel FRANTA; Briana CONRAD et. al.

Základní údaje

Originální název

Measurement of doping profiles by a contactless method of IR reflectance under grazing incidence

Autoři

HOLOVSKÝ, Jakub (203 Česká republika); Zdeněk REMEŠ (203 Česká republika); Aleš PORUBA (203 Česká republika); Daniel FRANTA (203 Česká republika, garant, domácí); Briana CONRAD (203 Česká republika); Lucie ABELOVÁ a David BUŠEK

Vydání

Review of Scientific Instruments, 2018, 0034-6748

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10302 Condensed matter physics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 1.587

Kód RIV

RIV/00216224:14310/18:00106359

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000437195200014

EID Scopus

2-s2.0-85048681137

Klíčová slova anglicky

IR reflectance; doping; semiconductors

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 23. 4. 2024 14:15, Mgr. Michal Petr

Anotace

V originále

An improved contactless method of the measurement and evaluation of charge carrier profiles in polished wafers by infrared reflectance was developed. The sensitivity of optical reflectance to the incidence angle was theoretically analyzed. A grazing incident angle enhances sensitivity to doping profile parameters. At the same time, the sensitivity to experimental errors sharply increases around the Brewster angle. Therefore, the optimal angle of 65 was chosen. Experimental errors such as unintentional polarization of the measurement beam were minimized by division by reference spectra taken on an undoped sample and further by normalization to a fixed value in the region of 4000 cm1 to 7000 cm1. The carrier profile in boron-doped samples was parametrized by 3 parameters and that in phosphorous-doped samples was parametrized by 4 parameters, using additional empirically determined assumptions. As a physical model, the Drude equation is used with two parameters assumed to be concentration-dependent: relaxation time and contribution from band-to-band excitations. The model parameters were calibrated independently by infrared ellipsometry. The presented method gives results in satisfactory agreement with the profiles measured by the electrochemical capacitance-voltage method.