2021
PREVIS: Predictive visual analytics of anatomical variability for radiotherapy decision support
FURMANOVÁ, Katarína, Ludvig P MUREN, Oscar CASARES-MAGAZ, Vitali MOISEENKO, John P EINCK et. al.Základní údaje
Originální název
PREVIS: Predictive visual analytics of anatomical variability for radiotherapy decision support
Autoři
FURMANOVÁ, Katarína (703 Slovensko, domácí), Ludvig P MUREN, Oscar CASARES-MAGAZ, Vitali MOISEENKO, John P EINCK, Sara PILSKOG a Renata G RAIDOU
Vydání
Computers & Graphics, Elsevier Science, 2021, 0097-8493
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.821
Kód RIV
RIV/00216224:14330/21:00124927
Organizační jednotka
Fakulta informatiky
UT WoS
000661427000001
Klíčová slova anglicky
Medical Visualization; Visual Analytics; Comparative Visualization; Ensemble Visualization; Radiotherapy Planning; Cohort Study
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 3. 11. 2022 12:04, RNDr. Katarína Furmanová, Ph.D.
Anotace
V originále
Radiotherapy (RT) requires meticulous planning prior to treatment, where the RT plan is optimized with organ delineations on a pre-treatment Computed Tomography (CT) scan of the patient. The conventionally fractionated treatment usually lasts several weeks. Random changes (e.g., rectal and bladder filling in prostate cancer patients) and systematic changes (e.g., weight loss) occur while the patient is being treated. Therefore, the delivered dose distribution may deviate from the planned. Modern technology, in particular image guidance, allows to minimize these deviations, but risks for the patient remain. We present PREVIS: a visual analytics tool for (i) the exploration and prediction of changes in patient anatomy during the upcoming treatment, and (ii) the assessment of treatment strategies, with respect to the anticipated changes. Records of during-treatment changes from a retrospective imaging cohort with complete data are employed in PREVIS, to infer expected anatomical changes of new incoming patients with incomplete data, using a generative model. Abstracted representations of the retrospective cohort partitioning provide insight into an underlying automated clustering, showing main modes of variation for past patients. Interactive similarity representations support an informed selection of matching between new incoming patients and past patients. A Principal Component Analysis (PCA)-based generative model describes the predicted spatial probability distributions of the incoming patient’s organs in the upcoming weeks of treatment, based on observations of past patients. The generative model is interactively linked to treatment plan evaluation, supporting the selection of the optimal treatment strategy. We present a usage scenario, demonstrating the applicability of PREVIS in a clinical research setting, and we evaluate our visual analytics tool with eight clinical researchers.