J 2022

An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study

TORRENTE, María, Pedro A SOUSA, Roberto HERNÁNDEZ, Mariola BLANCO, Virginia Calvo Ana COLLAZO et. al.

Základní údaje

Originální název

An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from the Clarify Study

Autoři

TORRENTE, María, Pedro A SOUSA, Roberto HERNÁNDEZ, Mariola BLANCO, Virginia Calvo Ana COLLAZO, Gracinda R GUERREIRO, Beatriz NÚÑEZ, Joao PIMENTAO, Juan Cristóbal SÁNCHEZ, Manuel CAMPOS, Luca COSTABELLO, Vít NOVÁČEK (203 Česká republika, garant, domácí), Ernestina MENASALVAS, María Esther VIDAL, Mariano PROVENCIO a Virginia CALVO

Vydání

CANCERS, SWITZERLAND, MDPI, 2022, 2072-6694

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 5.200

Kód RIV

RIV/00216224:14330/22:00127570

Organizační jednotka

Fakulta informatiky

UT WoS

000846265900001

Klíčová slova česky

artificial intelligence; data integration; cancer patients; patient stratification; precision oncology; decision support system

Klíčová slova anglicky

artificial intelligence; data integration; cancer patients; patient stratification; precision oncology; decision support system

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 6. 4. 2023 13:36, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

Background: Artificial intelligence (AI) has contributed substantially in recent years to the resolution of different biomedical problems, including cancer. However, AI tools with significant and widespread impact in oncology remain scarce. The goal of this study is to present an AI-based solution tool for cancer patients data analysis that assists clinicians in identifying the clinical factors associated with poor prognosis, relapse and survival, and to develop a prognostic model that stratifies patients by risk. Materials and Methods: We used clinical data from 5275 patients diagnosed with non-small cell lung cancer, breast cancer, and non-Hodgkin lymphoma at Hospital Universitario Puerta de Hierro-Majadahonda. Accessible clinical parameters measured with a wearable device and quality of life questionnaires data were also collected. Results: Using an AI-tool, data from 5275 cancer patients were analyzed, integrating clinical data, questionnaires data, and data collected from wearable devices. Descriptive analyses were performed in order to explore the patients’ characteristics, survival probabilities were calculated, and a prognostic model identified low and high-risk profile patients. Conclusion: Overall, the reconstruction of the population’s risk profile for the cancer-specific predictive model was achieved and proved useful in clinical practice using artificial intelligence. It has potential application in clinical settings to improve risk stratification, early detection, and surveillance management of cancer patients.