FI:IV126 Fundamentals of AI - Informace o předmětu
IV126 Fundamentals of Artificial Intelligence
Fakulta informatikypodzim 2022
- Rozsah
- 2/0/1. 3 kr. (plus ukončení). Ukončení: zk.
- Vyučující
- doc. Mgr. Hana Rudová, Ph.D. (přednášející)
Mgr. Václav Sobotka (pomocník) - Garance
- doc. Mgr. Hana Rudová, Ph.D.
Katedra počítačových systémů a komunikací – Fakulta informatiky
Dodavatelské pracoviště: Katedra počítačových systémů a komunikací – Fakulta informatiky - Rozvrh
- Čt 10:00–11:50 A217
- Předpoklady
- The course is a continuation of the PB016 Introduction to Artificial Intelligence, PB016 completion is not a prerequisite for course completion.
It is presumed knowledge of probability theory corresponding to the course MB103 Continuous models and statistics. - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 39 mateřských oborů, zobrazit
- Cíle předmětu
- The course completes comprehensive introductory knowledge of artificial intelligence following the course PB016 Artificial Intelligence I. The course discusses search algorithms concentrating on metaheuristics and local search, classical planning, uncertain reasoning, and introduction into robotics oriented on robot path planning.
- Výstupy z učení
- The graduate will be aware of local search and metaheuristics algorithms and will be able to solve practical problems with their help.
The graduate will understand problematics of the AI planning, will learn how to represent planning problem and how to solve it using base algorithms.
The graduate will gain an overview of how to work with uncertainties in the given problem and will learn to use basic procedures for including uncertainty in problem solving.
The graduate will be aware of the base concepts from robotics which is used for demonstration how the above knowledge can be applied, especially in the planning of robot motion. - Osnova
- Local search and metaheuristics: Single-solution based search, principles, and concepts, strategies for improving local search. Population-based search, evolutionary algorithms, swarm intelligence.
- Planning: Problem representation. State space planning, forward and backward planning, domain-specific planning. Plan space planning, partial order planning.
- Uncertain knowledge and reasoning: Probabilistic reasoning, Bayesian networks, exact and approximate inference. Time and uncertainty. Utility theory, decision networks. Sequential decision problems, Markov decision processes.
- Robotics: Robot hardware, robotic perception, robot scheduling in manufacturing. Path planning in robotics, movement.
- Literatura
- RUSSELL, Stuart J. a Peter NORVIG. Artificial intelligence : a modern approach. Fourth edition. Hoboken: Pearson, 2021, xvii, 1115. ISBN 9780134610993. info
- TALBI, El-Ghazali. Metaheuristics: From Design to Implementation. Wiley, 2009.
- GHALLAB, Malik, Dana NAU a Paolo TRAVERSO. Automated Planning: Theory & Practice. Morgan Kaufmann, 2004. info
- Výukové metody
- Standard lecture, one homeworks, one written test during the semester. Lectures include exercises. Slides in Czech will be available from past semesters.
- Metody hodnocení
- Evaluation is completed based on the final written exam (70 points), one programming homework during the semester aimed to solve a practical problem (10 points), one written test during the semester (20 points), and bonus points for activity during lectures (about 12 points based on the number of lectures). Successful completion of the course requires getting at least 40 points for the written exam and at least 13 points for the work during the semester (homework, written test). Also, each student can get 1 bonus point for activity in each lecture (e.g., student response to several easy questions and/or student questions to clarify some part of the lecture or student response to one harder question). Evaluation is the following: A more than 90, B 89-80, C 79-70, D 69-60, E 59-55.
- Vyučovací jazyk
- Angličtina
- Informace učitele
- https://is.muni.cz/el/fi/podzim2022/IV126/index.qwarp
- Další komentáře
- Studijní materiály
Předmět je vyučován každoročně. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (podzim 2022, nejnovější)
- Permalink: https://is.muni.cz/predmet/fi/podzim2022/IV126