M006 Set Theory

Faculty of Informatics
Spring 2000
Extent and Intensity
2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
Teacher(s)
prof. RNDr. Ladislav Skula, DrSc. (lecturer)
Mgr. Jiří Zelinka, Dr. (lecturer)
Mgr. Martin Ander, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Departments - Faculty of Science
Prerequisites
M005 Foundations of mathematics
Prerequisites M005 Foundations of mathematics
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus
  • Complete lattices: distributive lattice, directed set, complete posets, compact elements, algebraic lattice
  • Cardinal numbers: cardinal number, ordering of cardinal numbers, Cantor--Bernstein theorem, operations with cardinal numbers
  • Well-ordered sets: well-ordered set, transfinite induction, operations with well-ordered sets
  • Ordinal numbers: ordinal number, ordering of ordinal numbers, ordinal arithmetic, countable ordinal numbers
  • Axiom of choice: axiom of choice, well-ordering principle, maximality principle
Literature
  • Rosický, Jiří, Teorie množin, učební text, 1996, Masarykova univrazita v Brně
  • KOLÁŘ, Josef, Olga ŠTĚPÁNKOVÁ and Michal CHYTIL. Logika, algebry a grafy. 1. vyd. Praha: SNTL - Nakladatelství technické literatury, 1989. 434 s. info
  • BALCAR, Bohuslav and Petr ŠTĚPÁNEK. Teorie množin. 1. vyd. Praha: Academia, 1986. 412 s., 6. info
  • FUCHS, Eduard. Teorie množin [Fuchs, 1974]. 1. vyd. Brno: Rektorát UJEP, 1974. 176 s. info
Language of instruction
Czech
Further Comments
The course is taught annually.
The course is taught: every week.
The course is also listed under the following terms Spring 1996, Spring 1997, Spring 1998, Spring 1999, Spring 2001, Spring 2002.
  • Enrolment Statistics (Spring 2000, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2000/M006