PřF:Bi9060 Bioinformatics II - Course Information
Bi9060 Bioinformatics II – proteins
Faculty of ScienceAutumn 2014
- Extent and Intensity
- 1/0/0. 1 credit(s) (plus extra credits for completion). Type of Completion: k (colloquium).
- Teacher(s)
- prof. Mgr. Jiří Damborský, Dr. (lecturer)
Mgr. Martina Damborská (assistant)
prof. RNDr. Roman Pantůček, Ph.D. (assistant)
Mgr. Eva Šebestová, Ph.D. (assistant) - Guaranteed by
- prof. Mgr. Jiří Damborský, Dr.
Department of Experimental Biology – Biology Section – Faculty of Science
Contact Person: prof. Mgr. Jiří Damborský, Dr.
Supplier department: Department of Experimental Biology – Biology Section – Faculty of Science - Timetable
- Tue 11:00–12:50 B11/306
- Prerequisites (in Czech)
- ( Bi4010 Essential molecular biology || Bi4020 Molecular biology ) && NOW( Bi5000 Bioinformatics I ) && ! C9080 Bioinformatics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 6 fields of study the course is directly associated with, display
- Course objectives
- The aim of this course is to give an introduction to Bioinformatics. The course will consist of theoretical part followed by practical training using computers and Internet. An introduction will be given to the theory of genome and protein information resources, to the DNA and protein sequence analysis, to the organization and searching of primary and secondary databases, etc. The students will be able to understand the basic principles of bioinformatics and to use basic tools and databases for solving practical problems. They will be able to handle different types of data by analogy with examples learned during the course.
- Syllabus
- I. OPENING what is it Bioinformatics? study material organization lectures examination
- II. INTRODUCTION history of sequencing what is it Bioinformatics? sequence to structure deficit genome projects why is Bioinformatics important? patter recognition and prediction folding problem sequence analysis homo/analogy and ortho/paralogy
- III. INFORMATION NETWORKS what is the Internet? how do computers find each other? FTP and Telnet what is the World Wide Web? HTTP, HTML and URL EMBnet, EBI, NCBI SRS and ENTREZ
- IV. PROTEIN INFORMATION RESOURCES-I biological databases - introduction primary protein sequence databases composite protein sequence databases
- V. PROTEIN INFORMATION RESOURCES-II secondary databases composite secondary databases protein structure databases protein structure classification databases
- VI. GENOME INFORMATION RESOURCES primary DNA sequence databases specialised DNA sequence databases
- VII. DNA SEQUENCE ANALYSIS why to analyse DNA? gene structure gene sequence analysis expression profile, cDNA, EST EST sequences analysis
- VIII. PAIRWISE SEQUENCE ALIGNMENT database searching alphabets and complexity algorithms and programs sequences and sub-sequences identity and similarity dotplot local and global similarity pairwise database searching
- IX. MULTIPLE SEQUENCE ALIGNMENT multiple sequence alignment consensus sequence manual methods simultaneous and progressive methods databases of multiple sequence alignments hybrid approach for database searching
- X. SECONDARY DATABASE SEARCHING why to search secondary databases? secondary databases regular expressions fingerprints blocks profiles Hidden Markov Models
- XI. ANALYSIS PACKAGES commercial databases commercial software comprehensive packages packages for DNA analysis intranet packages Internet packages
- XII. PROTEIN STRUCTURE MODELLING protein structure protein structure databases prediction of secondary structure prediction of protein fold prediction of tertiary structure modelling of protein-ligand complexes
- XIII. BIOINFORMATICS IN PRACTICE-I Information networks Protein information resources Genome information resources DNA sequence analysis
- XIV. BIOINFORMATICS IN PRACTICE-II Pairwise sequence alignment Multiple sequence alignment Secondary database searching Protein structure modelling
- Literature
- Introduction to Bioinformatics, T.K. Attwood & D.J. Parry-Smith, Longman, Essex, 1999.
- Teaching methods
- lectures and class discussions
- Assessment methods
- Written test: 25 questions Minimum correct answers for passed: 17
- Language of instruction
- Czech
- Follow-Up Courses
- Further Comments
- Study Materials
The course can also be completed outside the examination period.
The course is taught annually. - Teacher's information
- http://loschmidt.chemi.muni.cz/peg/loadframe.html?courses.html
- Enrolment Statistics (Autumn 2014, recent)
- Permalink: https://is.muni.cz/course/sci/autumn2014/Bi9060