PřF:MUC51 Pravděpodobnost a statistika - Informace o předmětu
MUC51 Pravděpodobnost a statistika
Přírodovědecká fakultapodzim 2019
- Rozsah
- 2/2/0. 4 kr. Ukončení: zk.
- Garance
- RNDr. Marie Budíková, Dr.
Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta
Dodavatelské pracoviště: Ústav matematiky a statistiky – Ústavy – Přírodovědecká fakulta - Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 7 mateřských oborů, zobrazit
- Cíle předmětu
- Cílem předmětu je:
seznámit studenty se základními pojmy popisné statistiky a počtu pravděpodobnosti;
ukázat studentům zajímavé příklady, které mohou později využít ve své učitelské praxi;
naučit studenty používat systém STATISTICA. - Výstupy z učení
- Po absolvování kurzu studenti
- umí získat informace z datového souboru ve formě tabulek, grafů a číselných charakteristik;
- rozumí základním pravděpodobnostním pojmům, jako je klasická, geometrická a podmíněná pravděpodobnost;
- jsou schopni používat důležitá diskrétní a spojitá pravděpodobnostní rozložení v odpovídajících situacích;
- umí vypočítat střední hodnotu, rozptyl, kovarianci a koeficient korelace diskrétních a spojitých náhodných veličin;
- budou mít dobré znalosti systému STATISTICA. - Osnova
- Popisná statistika. Základní a výběrový soubor, skalární a vektorové znaky, jejich funkcionální charakteristiky při bodovém a intervalovém zpracování dat. Nominální, ordinální, intervalové a poměrové znaky; jejich číselné charakteristiky.
- Počet pravděpodobnosti. Empirický zákon velkých čísel, axiomatická definice pravděpodobnostního prostoru a základní vlastnosti pravděpodobnosti. Konstrukce pravděpodobnosti v případě diskrétního základního prostoru, klasická pravděpodobnost. Konstrukce pravděpodobnosti na poli borelovských množin, geometrická pravděpodobnost. Stochasticky nezávislé jevy a podmíněná pravděpodobnost.
- Náhodné veličiny skalární a vektorové, jejich rozložení v obecném, diskrétním a spojitém případě. Simultánní a marginální rozložení náhodných veličin, stochasticky nezávislé náhodné veličiny, posloupnost nezávislých pokusů, různá diskrétní a spojitá rozložení. Kvantily, střední hodnota, rozptyl, kovariance a koeficient korelace náhodných veličin. Konvergence náhodné posloupnosti, slabý zákon velkých čísel, centrální limitní věta.
- Literatura
- povinná literatura
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Popisná statistika. 3., doplněné vyd. Brno: Masarykova univerzita, 1998, 52 s. ISBN 80-210-1831-3. info
- BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ a Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika. Sbírka příkladů. 3. vyd. Brno: Masarykova univerzita, 2004, 127 s. ISBN 80-210-3313-4. info
- doporučená literatura
- BUDÍKOVÁ, Marie, Maria KRÁLOVÁ a Bohumil MAROŠ. Průvodce základními statistickými metodami. vydání první. Praha: Grada Publishing, a.s., 2010, 272 s. edice Expert. ISBN 978-80-247-3243-5. URL info
- Výukové metody
- Výuka probíhá v rozsahu 2 h přednášky a 2 h cvičení týdně. Část cvičení probíhá v počítačové učebně s využitím speciálního statistického software.
- Metody hodnocení
- V průběhu semestru studenti píší dva testy. Závěrečná písemná zkouška se skládá ze čtyř příkladů, z nichž lze získat až 100 bodů. K úspěšnému zvládnutí je třeba dosáhnout aspoň 51 bodů. Při zkoušce je možno používat studijní literaturu.
- Navazující předměty
- Další komentáře
- Předmět je vyučován každoročně.
Výuka probíhá každý týden. - Nachází se v prerekvizitách jiných předmětů
- Statistika zápisu (podzim 2019, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2019/MUC51