PřF BSDVP Statistical Data Science
Name in Czech: Statistická datová věda
bachelor's full-time single-subject, language of instruction: Czech Czech
Included in the programme: PřF B-SDV Statistical Data Science

Common University Core (15 cr.)

To successfully complete their studies, students in bachelor's degree programmes will receive 15 kr. of courses in the so-called Common University Core. These credits include 2 credits from sports courses (PE), 4 credits for a foreign language, and 9 credits for social science or science foundation courses - the so-called CORE courses. The current CORE course offerings are available here: https://www.muni.cz/studenti/spolecny-univerzitni-zaklad

Social science and science foundation

The student is required to enroll in courses with a minimum total value of 9 credits for the entire Bachelor's degree from the Common University Core. https://www.muni.cz/studenti/spolecny-univerzitni-zaklad

Language Courses

In order to successfully complete studies at the Faculty of Arts, the student is required to take the JASUZ Professional English exam for 4 credits. Language teaching is provided by the MU Language Education Centre.

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Specialization
PřF:JASUZExamination in English for Specific Purposes - Science A. Bízková Doleželovázk 0/0/04 --
4 credits

PE

All full-time students of Bachelor's degree programmes are obliged to complete the requirements for two credits (1 credit = 1 credit) in the sports activities courses listed under P9 during their studies. The courses are provided by the Centre for University Sport of the Faculty of Sport Studies.

Bachelor Thesis (min. 10 cr.)

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Specialization
PřF:M51XXBachelor Thesis 1 J. Pasekaz 0/0/05 5Z
PřF:M61XXBachelor Thesis 2 J. Pasekaz 0/0/05 6Z
10 credits

Compulsory Courses

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Specialization
FI:MB152Differential and Integral Calculus M. Veselýzk 2/2/03+2 1Z
PřF:M1110DLinear algebra for data science O. Klímazk 2/2/03+2 1Z
PřF:M4130Mathematical Software J. Koláčekz 2/2/04 1-
FI:IB113Introduction to Programming and Algorithms R. Pelánekzk 2/2/14+2 1-
PřF:M1130Mathematical Seminary I D. Krumlz 0/2/02 1-
PřF:M2100DMathematical analysis for data science P. Hasilzk 2/02+2 2Z
PřF:M4180Numerical Methods I J. Zelinkazk 2/2/04+2 2P
FI:MB153Statistics I J. Koláčekzk 2/2/03+2 2Z
PřF:M1VM01Algorithmization and numerical computations L. Přibylovák 0/3/05 2Z
PřF:M4131Python for Data Science J. Koláčekz 2/24 2-
FI:PV251Visualization B. Kozlíkovázk 2/1/03+2 3P
FI:PB016Introduction to Artificial Intelligence A. Horákzk 2/2/03+2 3-
PřF:M5120Linear Models in Statistics I D. Krauszk 2/2/04+2 3P
PřF:M7986Statistical inferences I S. Katinazk 2/2/04+2 3P
PřF:M8DBRDatabase systems and R for data science S. Katinazk 1/2/03+2 4-
FI:IB031Introduction to Machine Learning T. Brázdilzk 2/2/03+2 4P
PřF:M6130Computational statistics M. Budíkovázk 2/2/03+2 4P
PřF:M8DM1Data mining I R. Navrátilzk 2/2/04+2 4P
PřF:M7222Generalized linear models D. Krauszk 2/2/04+2 5P
PřF:M9121Time Series I D. Krauszk 2/2/04+2 5P
PřF:M9DM2Data mining II M. Kolářk 0/2/02+1 5-
FI:PA153Natural Language Processing P. Rychlýzk 2/0/02+2 5-
PřF:M0160Optimization P. Zemánekzk 2/2/04+2 6P
114 credits

Selective Courses

Students are required to complete selective courses worth at least 25 credits. In total, students must earn 180 credits during their studies. Students can obtain the remaining credits from elective courses at MU or by selecting additional courses from the selective courses.

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Specialization
FI:IB114Introduction to Programming and Algorithms II I. Černázk 2/1/03+2 2-
PřF:E3011Algorithmization and programming D. Schwarzk 2/2/04+1 2-
PřF:Bi9680enArtificial Intelligence in Biology, Chemistry, and Bioengineering J. Damborskýzk 2/0/02+2 3-
PřF:Bi9680encArtificial Intelligence in Biology, Chemistry, and Bioengineering - practice J. Damborskýk 0/1/01+1 3-
FI:PB154Database Systems P. Zezulazk 2/1/03+2 3-
PřF:M5180Numerical Methods II I. Selingerovázk 2/1/03+2 3-
PřF:M6201Non-linear dynamics L. Přibylovázk 2/2/04+2 4-
FI:IV109Modeling and Simulation R. Pelánekzk 2/1/03+2 4-
FI:PA026Artificial Intelligence Project A. Horákk 0/2/02+1 4-
PřF:M6110Mathematics of Insurance S. Zlatošovázk 2/2/04+2 4-
PřF:M5444Markov chains M. Budíkovázk 2/1/03+2 5-
ESF:BPE_ZAEKIntroduction to Econometrics D. Němeczk 2/2/06 5-
PřF:M7777Applied functional data analysis J. Koláčekz 0/2/03 5-
PřF:M5KPMChapters from actuarial mathematics S. Zlatošovázk 2/1/03+2 5-
PřF:PLIN068Applied Machine Learning R. Holajk 2/0/03 6-
PřF:PLIN069Applied Machine Learning Project R. Holajzk 0/0/46 6-
74 credits

Elective Courses

The students are required to complete 180 credits for their studies. They may choose the recommended elective course listed, select from other elective courses at MU, or choose from selective courses within the programme.

Code Name Guarantor Type of Completion Extent and Intensity Credits Term Specialization
PřF:MPRAXProfessional practice J. Koláčekz 0/0 8 týdnů.10 6-
10 credits