MB005 Základy matematiky

Fakulta informatiky
podzim 2004
Rozsah
2/2. 4 kr. (plus ukončení). Ukončení: zk.
Vyučující
doc. Mgr. Ondřej Klíma, Ph.D. (přednášející)
doc. Mgr. Aleš Návrat, Dr. rer. nat. (cvičící)
Mgr. Jan Pavlík, Ph.D. (cvičící)
Mgr. Miroslava Tkadlecová, Ph.D. (cvičící)
RNDr. Lenka Viskotová, Ph.D. (cvičící)
Garance
prof. RNDr. Jiří Rosický, DrSc.
Fakulta informatiky
Kontaktní osoba: prof. RNDr. Jiří Rosický, DrSc.
Rozvrh
Po 8:00–9:50 D3
  • Rozvrh seminárních/paralelních skupin:
MB005/01: Po 10:00–11:50 B007, L. Viskotová
MB005/02: Po 12:00–13:50 B007, M. Tkadlecová
MB005/03: Po 12:00–13:50 B411, O. Klíma
MB005/04: Út 12:00–13:50 B003, J. Pavlík
MB005/05: Pá 8:00–9:50 B011, A. Návrat
MB005/06: Pá 10:00–11:50 B011, A. Návrat
MB005/07: Út 14:00–15:50 B003, J. Pavlík
Předpoklady
(! M005 Základy matematiky )&&! MB101 Matematika I &&!NOW( MB101 Matematika I )
Znalost středoškolské matematiky.
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory/plány
Cíle předmětu
Přednáška navazuje na středoškolskou látku a seznamuje s některými základními matematickými pojmy a představami. Jsou to zejména základy matematické logiky, teorie množin, algebry a kombinatoriky. Připravuje studenta na jejich využití v dalším průběhu studia.
Osnova
  • 1. Základní logické pojmy (výroky, kvantifikátory, matematická tvrzení a jejich důkazy).
  • 2. Základní vlastnosti celých čísel (věta o dělení se zbytkem celých čísel, dělitelnost, číselné kongruence).
  • 3. Základní množinové pojmy (množinové operace včetně kartézského součinu).
  • 4. Zobrazení (základní typy zobrazení, skládání zobrazení).
  • 5. Základy kombinatoriky (variace, kombinace, princip inkluze a exkluze).
  • 6. Mohutnost množiny (konečné, spočetné a nespočetné množiny).
  • 7. Relace (relace mezi množinami, skládání relací, relace na množině).
  • 8. Uspořádané množiny (relace uspořádání a lineárního uspořádání, význačné prvky, Hasseovy diagramy, supremum a infimum).
  • 9. Ekvivalence a rozklady (relace ekvivalence, rozklad na množině a jejich vzájemný vztah).
  • 10. Základní algebraické struktury (grupoid, pologrupa, grupa, okruh, obor integrity, těleso).
  • 11. Homomorfizmy algebraických struktur (základní vlastnosti homomorfimů, jádro a obraz homomorfizmu).
Literatura
  • Balcar, Bohuslav - Štěpánek, Petr. Teorie množin [Balcar, Štěpánek, 1986]. 1. vyd. Praha : Academia, 1986. 412 s. r87U.
  • Childs, Lindsay. A Concrete Introduction to Higher Algebra, Springer-Verlag, 1979, 338s. ISBN 0-387-90333-x
  • Horák, Pavel. Algebra a teoretická aritmetika. 1 [Horák]. Brno : Rektorát Masarykovy univerzity Brno, 1991. 196 s. ISBN 80-210-0320-0.
  • Rosický, Jiří. Algebra. I [Rosický, 1994]. 2. vyd. Brno : Vydavatelství Masarykovy univerzity, 1994. 140 s. ISBN 80-210-0990-.
  • J. Rosický, Základy matematiky, učební text
Metody hodnocení
Zkouška je písemná a má dvě části-první písemka(25%) během semestru, druhá(75%) ve zkouškovém období. Budou právě 4 termíny ve zkouškovém - 2 řádné, první opravný a druhý opravný. K připuštění ke zkoušce je třeba získat zápočet ze cvičení. Ten je podmíněn účastí, jsou dovoleny tři neomluvené neúčasti (a tři omluvené).
Informace učitele
http://math.muni.cz/~klima/ZakladyM/zakladym-fi-04.html
Vyžaduje se znalost látky uvedené v osnově v rozsahu přednášky. Lze ji získat i studiem této látky z různých položek literatury.
Další komentáře
Předmět je vyučován každoročně.
Předmět je zařazen také v obdobích podzim 2002, jaro 2003, podzim 2003, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011.