PV275 Introduction to Quantum Computer Programming

Fakulta informatiky
podzim 2024
Rozsah
2/2/0. 3 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučováno prezenčně.
Vyučující
doc. RNDr. Jan Bouda, Ph.D. (přednášející)
Mgr. Michal Sedlák, PhD. (přednášející)
doc. Mgr. Mário Ziman, Ph.D. (přednášející)
RNDr. Daniel Reitzner, PhD. (cvičící)
Garance
doc. RNDr. Jan Bouda, Ph.D.
Katedra počítačových systémů a komunikací – Fakulta informatiky
Kontaktní osoba: doc. RNDr. Jan Bouda, Ph.D.
Dodavatelské pracoviště: Katedra počítačových systémů a komunikací – Fakulta informatiky
Předpoklady
( MB141 Lineární alg. a diskrétní mat. || MB151 Lineární modely || MB101 Lineární modely || MB201 Lineární modely B ) && IB111 Základy programování
Basic knowledge of linear algebra, probability theory, programming in Python
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
předmět má 32 mateřských oborů, zobrazit
Cíle předmětu
This is an introductory course to quantum information. The main goal is to provide students with basic idea what are the expected applications of quantum information processing, how quantum computing and communication works, and give them practical experience how to program quantum computer. All programming will be performed using Python language and IBM Quiskit library.


As a part of the course we want students to become comfortable with basic mathematics necessary for quantum information processing. While you already know almost all necessary mathematics from prerequisite courses, there is a big difference between knowing something and being able to use it an intuitive and efficient way.


The course is designed in the way that it introduces in a parallel way basic quantum information applications, necessary mathematical concepts and teaches how to implement these applications on quantum computers. As an example, on second lecture you will learn about BB84 quantum key distribution. On this concept we will explain what quantum state is, what is a quantum measurement, and we will learn how to implement BB84 using the Quiskit Python library. In this way we avoid boring monothematical blocks of mathematics.


This course will be in future followed by two advanced courses. The second course will introduce all necessary concepts of quantum information processing – necessary concepts from mathematics, physics and informatics, so that student will have all theoretical knowledge necessary to work with quantum information processing. The third course will explain the applications of quantum information processing in full scale – communication, algorithms, cryptography, NP-approximation, machine learning, simulation of physical and chemical systems.

Výstupy z učení
After completing the course, a student
  • will be able to implement simple quantum programs using the IBM Quiskit library
  • will know basic applications of quantum information processing
  • and will be able to program them using the IBM Quiskit library
  • will be able to perform basic mathematical calculations necessary for quantum information processing applications
  • Osnova
    • More detailed syllabus is provided in the study materials, namely in the Interactive syllabi.

    • Quantum information processing, tools and applications.
    • Existing quantum technologies (IBM, Toshiba, Google, Microsoft, D-wawe, Qusoft, idQuantique), Chinese backbone quantum network, quantum satellites.
    • BB84 quantum key distribution, Bell inequalities, entanglement-based key distribution.
    • Quantum teleportation.
    • Quantum encryption.
    • Quantum bit commitment and coin flipping.
    • Grover’s search.
    • Quantum processors, universal sets of quantum gates, approximation.
    Literatura
    • - Qiskit documentation: https://qiskit.org/documentation/ Tutorials: https://nbviewer.jupyter.org/github/Qiskit/qiskit-tutorial/blob/master/index.ipynb
    • - IBM Q Experience Tutorial: https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide
    • WATROUS, John. The theory of quantum information. First published. Cambridge, United Kingdom: Cambridge University Press, 2018, viii, 590. ISBN 9781107180567. info
    • NIELSEN, Michael A. a Isaac L. CHUANG. Quantum computation and quantum information. 10th Anniversary ed. Cambridge: Cambridge University Press, 2010, xxxi, 676. ISBN 9781107002173. info
    • An introduction to quantum computing. Edited by Phillip Kaye - Raymond Laflamme - Michele Mosca. Oxford: Oxford University Press, 2007, xi, 274 p. ISBN 9780198570493. info
    Výukové metody
    Theoretical lectures, practical examples in tutorials, programming
    Metody hodnocení
    4 written mini-tests during tutorials (20 points together)


    Correctly solve blackboard tasks during tutorials (cca 15 points)


    Final test: written test+programming given task (70 points)


    Tutorial attendance mandatory: not attending 1 tutorial no penalty, 2 tutorials 5 point penalty, 3 or more 10 point penalty. Penalty is subtracted only from the pass/fail limit, it does not ifluence the grade (e.g. C vs. D).


    To pass you need: Exam 50 points, colloquium 45 points, fulfilling requirements ("zapocet") 20 points.

    Vyučovací jazyk
    Angličtina
    Navazující předměty
    Další komentáře
    Předmět je vyučován každoročně.
    Výuka probíhá každý týden.
    Nachází se v prerekvizitách jiných předmětů
    Předmět je zařazen také v obdobích podzim 2019, podzim 2020, podzim 2021, podzim 2022, podzim 2023.
    • Statistika zápisu (nejnovější)
    • Permalink: https://is.muni.cz/predmet/fi/podzim2024/PV275