PřF:F1421 Základní mat. metody ve Fyz.1 - Informace o předmětu
F1421 Základní matematické metody ve fyzice 1
Přírodovědecká fakultapodzim 2007
- Rozsah
- 2/1. 4 kr. (příf plus uk plus > 4). Ukončení: kz.
- Vyučující
- Mgr. Lenka Czudková, Ph.D. (přednášející)
Mgr. Marek Chrastina, Ph.D. (cvičící)
Mgr. Martin Bureš, Ph.D. (cvičící) - Garance
- prof. RNDr. Michal Lenc, Ph.D.
Ústav teoretické fyziky a astrofyziky – Fyzikální sekce – Přírodovědecká fakulta
Kontaktní osoba: Mgr. Lenka Czudková, Ph.D. - Rozvrh
- Po 12:00–13:50 F1 6/1014
- Rozvrh seminárních/paralelních skupin:
F1421/02: St 13:00–13:50 F4,03017, M. Bureš
F1421/03: Po 9:00–9:50 Fs1 6/1017, M. Chrastina - Předpoklady
- Doporučuje se zvládnutí základních operací při derivování a integrování na gymnaziální úrovni.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- Cíle předmětu
- Předmět je zaměřen na získání přehledu o základních matematických postupech používaných ve fyzikálních teoriích, především z oblasti matematické analýzy (diferenciální a integrální počet funkcí jedné a více proměnných, obyčejné diferenciální rovnice) a algebry (vektorová algebra v dvojrozměrném a trojrozměrném prostoru, základy počítání s tenzory). Důraz je kladen na pochopení základních pojmů, výpočetní praxi a fyzikální aplikace.
- Osnova
- 1. Derivace a integrál funkce jedné proměnné, procvičení základních operací. 2. Základy vektorové algebry v R-2 a R-3: vektory, operace s vektory, skalární a vektorový součin a jejich geometrická a fyzikální interpretace, počítání v bázích. 3. Základy vektorové algebry v R-2 a R-3: přechody mezi bázemi. 4. Obyčejné diferenciální rovnice: separace proměnných, lineární diferenciální rovnice prvního řádu, fyzikální aplikace (rozpad jader, absorpce záření). 5. Obyčejné diferenciální rovnice: lineární rovnice druhého a vyššího řádu s konstatními koeficienty, fyzikální aplikace (pohybové rovnice částice, harmonický oscilator, tlumené a vynucené kmity). 6. Jednoduché soustavy pohybových rovnic. 7. Křivočaré souřadnice. 8. Křivkový integrál: křivka, parametrizace, křivkový integrál prvního druhu a fyzikální aplikace (délka, hmotnost, těžiště, momenty setrvačnosti křivky), křivkový integrál druhého druhu a fyzikální aplikace (práce podél křivky). 9. Skalární funkce dvou a tří proměnných: derivace v daném směru, parciální derivace, gradient. 10. Skalární funkce dvou a tří proměnných: úplný diferenciál, kmenová funkce výrazu pro elementární práci (existence potenciálu). 11. Dvojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (plošný obsah, fyzikální charakteristiky dvojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti). 12. Trojný integrál: definice, výpočet (Fubiniova věta, věta o transformaci inegrálu), fyzikální aplikace (objem, fyzikální charakteristiky trojrozměrných útvarů se spojitě rozloženou hmotností, tj. hmotnost, těžiště, momenty setrvačnosti).
- Literatura
- MUSILOVÁ, Jana a Pavla MUSILOVÁ. Matematika pro porozumění i praxi I. Brno: VUTIUM, 2006, 281 s. Vysokoškolské učebnice. ISBN 80-214-2914-3. info
- KVASNICA, Jozef. Matematický aparát fyziky. Vyd. 2., opr. Praha: Academia, 1997, 383 s. ISBN 8020000887. info
- Metody hodnocení
- Typ výuky a zkoušky přednáška+cvičení, klasifikovaný zápočet - viz podmínky v položce Informace učitele.
- Navazující předměty
- Informace učitele
Požadavky pro úspěšné ukončení předmětu pro studenty prezenční formy:- Absolvování tří písemek, termíny budou oznámeny alespoň dva týdny předem: (1) tematické celky 1. až 3., (2) tematické celky 4. až 7., (3) tematické celky 8. až 12. Každá písemka je klasifikována podle stupnice uvedené ve Studijním a zkušebním řádu MU. Pro úspěšné ukončení předmětu je třeba, aby stupněm F byla hodnocena nejvýše jedna písemka. K dosažení hodnocení alespoň E na dané písemce je třeba získat nejméně 50 procent z maximálního počtu bodů. Výsledná klasifikace předmětu se stanoví jako průměr hodnocení jednotlivých písemek.
- Odevzdání domácích úkolů. Úkoly budou ukládány na konci každého cvičení v rozsahu dvou příkladů a odevzdávány nejpozději v násedujícím cvičení. Každý úkol je možno opravovat nejvýše jednou.
- Účast na všech cvičeních. Tento požadavek lze nahradit vypracováním dvou náhradních příkladů za každé cvičení. Každý soubor náhradních příkladů lze opravovat nejvýše jednou. Náhradní příklady za neúčasti ve cvičení je nutno odevzdat do 20. ledna 2008.
- Dodatečné informace k ukončení předmětu jsou k dispozici na stránce http://physics.muni.cz/~czudkova/, položka "Výuka".
- Absolvování závěrečné písemky pokrývající látku celého semestru. Písemka bude obsahovat tři odděleně klasifikované tematické části (viz dílčí písemky pro prezenční formu). Klasifikace je dána stupnicí uvedenou ve Studijním a zkušebním řádu MU. Písemka je úspěšná pouze v případě, že nejvýše jedna z jejích částí je hodnocena stupněm F. Další pravidla klasifikace jsou shodná s pravidly pro prezenční formu. Výsledná klasifikace předmětu je stanovena jako průměr známek za jednotlivé části písemky. Termín písemky bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním prosincovém týdnu 2007.
- Odevzdání domácích úkolů shodných s úkoly pro prezenční formu. Každý domácí úkol lze opravovat nejvýše jednou.
- Odevzdání náhradních příkladů za neúčasti ve cvičení (dva příklady za každé cvičení). Každý soubor náhradních příkladů lze opravovat nejvýše jednou.
- Domácí úkoly i příklady za neúčasti ve cvičení je nutno odevzdat do 20. ledna 2008. Způsob zveřejňování příkladů bude oznámen mailem rozeslaným prostřednictvím Informačního systému v prvním říjnovém týdnu 2007.
- Dodatečné informace k ukončení předmětu jsou k dispozici na stránce http://physics.muni.cz/~czudkova/, položka "Výuka".
- Další komentáře
- Předmět je vyučován každoročně.
- Statistika zápisu (podzim 2007, nejnovější)
- Permalink: https://is.muni.cz/predmet/sci/podzim2007/F1421